
NASA / CR-1999-209119

Aviation System Analysis Capability

Executive Assistant Development

Eileen Roberts, James A. Villani, Kevin Anderson, and Paul Book

Logistics Management Institute, McLean, Virginia

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS2-14361

March 1999

Available from:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171
(703) 605-6000

Abstract

In this technical document, we describe the development of the Aviation System

Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC)

and Beta version. We describe the genesis and role of the ASAC system, discuss

the objectives of the ASAC system, provide an overview of components and

models in the ASAC system, and describe the design process and the results of the

ASAC EA POC and Beta system development. We also describe the evaluation

process and results for applicable commercial off-the-shelf software. The docu-

ment has seven chapters, a bibliography, and two appendices.

.o.
lU

Contents

Chapter 1 Introduction .. 1-1

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION'S ROLE IN PROMOTING

AVIATION TECHNOLOGY ... 1-1

NASA's RESEARCH OBJECTrVE .. 1-2

GENESIS OF THE AVIATION SYSTEM ANALYSIS CAPABILITY ... 1-2

GOALS OF THE ASAC PROJECT: IDENTIFY AND EVALUATE PROMISING

TECHNOLOGIES ... 1-3

APPROACH TO ANALYZING THE INTEGRATED AVIATION SYSTEM 1-4

DOCUMENT OVERVIEW ... 1-4

Chapter 2 Components of the ASAC .. 2-1

OVERVIEW .. 2-1

ASAC EXECUTIVE ASSISTANT .. 2-2

Chapter 3 ASAC Analyses .. 3-1

ASAC MODELS .. 3-1

SCHEMATIC OF ASAC MODELS .. 3-2

Analyses Using ASAC Models .. 3-3

Chapter 4 Design and Development Methodology ... 4-1

THE DSSA APPROACH .. 4-1

DSSA DESIGN TOOLS ... 4-2

Unified Modeling Language ... 4-2

Class-Responsibility-Collaboration Card Technique ... 4-3

Design Patterns ... 4-4

FURTHER READING .. 4-5

Chapter 5 ASAC EA Proof Of Concept .. 5-1

ASAC EA REQUIREMENTS ... 5-2

Analysis Execution ... 5-2

Analysis Management .. 5-3

V

Analysis Specification .. 5-4

Distributed Computing ... 5-4

Error Handling .. 5-5

General ... 5-5

Model Specification ... 5-5

Optimization ... 5-6

Security ... 5-6

POC GOALS .. 5-7

REVIEW AND ITERATE DSSA SUBSTAGE 2-8: DEFINE ASSUMPTIONS 5-7

REVmW AND ITERATE DSSA SUBSTAGE 2-9: DF.FtNE ISSUES .. 5-8

DSSA STAGE 4----REFINE POC DOMAIN MODELS .. 5-10

DSSA Substage 4-3: Develop Use Case Diagrams .. 5-12

DSSA Substage 4-4: Develop Interaction Diagrams .. 5-12

DSSA Substage 4-5: Develop Package Diagrams .. 5-19

DSSA Substage 4-6: Develop Class Diagrams .. 5-21

Domain-Specific Software Architecture Substage 4-7: Develop State

Diagrams .. 5-48

DSSA Substage 4-8: Develop Deployment Diagrams ... 5-53

DSSA Substage 4-9: Review and Iterate .. 5-54

DSSA STAGE 5ulDENTIFY REUSABLE ARTIFACTS ... 5-54

DSSA Substage 5-1: Develop and Collect the Reusable Artifacts 5-54

DSSA Substage 5-2: Develop Each Module .. 5-57

DSSA Substage 5-3: Requirements, Verification, and Testing 5-60

DSSA Substage 5-4: Review and Iterate .. 5-69

Chapter 6 ASAC EA Beta Version ... 6-1

BETA VERSION GOALS .. 6-2

REVIEW AND ITERATE DSSA SUBSTAGE 2-8: DEFINE ASSUMPTIONS 6-2

REVIEW AND ITERATE DSSA SUBSTAGE 2-9: DEFINE ISSUES ... 6-2

DSSA STAGE 4---DEVELOP AND REFINE BETA VERSION ANALYSIS AND MODEL

APPIACATION DOMAIN MODELS .. 6-3

DSSA Substage 4-3: Develop Use Case Diagrams .. 6-4

DSSA Substage 4-4: Develop Interaction Diagrams .. 6-4

vi

Contents

DSSA Substage 4-5: Develop Package Diagrams .. 6-6

DSSA Substage 4-6: Develop Class Diagrams .. 6-7

DSSA Substage 4-7: Develop State Diagrams ... 6-17

DSSA Substage 4-8: Develop Deployment Diagrams ... 6-18

DSSA STAGE 4----DEVELOP AND REFINE BETA VERSION USER APPLICATION

DOMAIN MODELS .. 6-18

DSSA Substage 4-3: Develop Use Case Diagrams .. 6-19

DSSA Substage 4-4: Develop

DSSA Substage 4-5: Develop

DSSA Substage 4-6: Develop

DSSA Substage 4-7: Develop

DSSA Substage 4-8:

Interaction Diagrams .. 6-19

Package Diagrams .. 6-22

Class Diagrams .. 6-23

State Diagrams ... 6-44

Develop Deployment Diagrams ... 6-45

DSSA Substage 4-9: Review and Iterate .. 6-45

DSSA STAGE 5--IDENTIFY REUSABLE ARTIFACTS ... 6-46

DSSA Substage 5-1: Develop and Collect the Reusable Artifacts 6-46

DSSA Substage 5-2: Develop Each Module .. 6-46

DSSA Substage 5-3: Requirements, Verification, and Testing 6-46

DSSA Substage 5-4: Review and Iterate .. 6-51

Chapter 7 Conclusion .. 7-1

Bibliography

Appendix A ASAC EA POC As-Run Test Procedures

Appendix B Abbreviations

FIGURES

Figure

Figure

Figure

Figure

Figure

Figure

1-1. NASA's Research Objective ... 1-2

1-2. ASAC Process ... 1-3

1-3. Components of the Integrated Aviation System .. 1-4

2-1. ASAC System Components ... 2-1

3-1. ASAC Model Links ... 3-3

4-1. CRC Card--Front View .. 4-3

vii

Figure 4-2.

Figure 4-3.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 5-5.

Figure 5-6.

CRC Card--Back View ... 4-3

CRC Card Process ... 4-4

POC Context Diagram ... 5-1

POC Use Case Diagram .. 5-12

Building an Analysis Sequence Diagram .. 5-13

Building an Analysis Collaboration Diagram .. 5-13

Building a Model Sequence Diagram .. 5-14

Building a Model Collaboration Diagram ... 5-15

Figure 5-7. Building a DataRelationship Between Two DataTransformers Sequence

Diagram .. 5-16

Figure 5-8. Building a DataRelationship Between Two DataTransformers

Collaboration Diagram ... 5-17

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

5-9. Running the Analysis Sequence Diagram ... 5-18

5-10. Running The Analysis Collaboration Diagram ... 5-19

5-11. Package Diagram ... 5-21

5-12. Subject Observer Class Diagram ... 5-22

5-13. Specification Package Class Diagram ... 5-24

5-14. Transformer Class Diagram ... 5-30

5-15. Data Element Class Diagram ... 5-34

5-16. Threads Class Diagram .. 5-39

5-17. Utility Class Diagram .. 5-40

5-18. Application Class Diagram .. 5-41

5-19. Analysis Client Class Diagram .. 5-45

5-20. Model Server Class Diagram ... 5-47

5-21. Analysis State Diagram ... 5-49

5-22. Model State Diagram ... 5-50

5-23. DataRelationship State Diagram ... 5-51

5-24. DataElementSet State Diagram ... 5-52

5-25. DataElement State Diagram .. 5-53

5-26. POC Deployment Diagram .. 5-54

5-27. ASAC EA Proof of Concept Development Environment 5-58

5-28. Proof of Concept Implementation ... 5-62

6-1. Beta Version Context Diagram .. 6-1

viii

Contents

Figure 6-2.

Figure 6-3.

Figure 6-4.

Figure 6-5.

Figure 6-6.

Figure 6-7.

Figure 6-8.

Figure 6-9.

Figure 6-10.

Figure 6-11.

Figure 6-12.

Figure 6-13.

Figure 6-14.

Figure 6-15.

Figure 6-16.

Figure 6-17.

Figure 6-18.

Figure 6-19.

Figure 6-20.

Figure 6-21.

Figure 6-22.

Figure 6-23.

Performing a DataRelationship Sequence Diagram .. 6-5

Performing a DataRelationship Collaboration Diagram 6-5

Beta Version Package Diagram ... 6-7

DataTransformer Class Diagram ... 6-9

Threads Class Diagram .. 6-12

Utility Package Class Diagram .. 6-13

Analysis Server Class Diagram ... 6-15

Proof of Concept Deployment Diagram .. 6-18

Login Sequence Diagram ... 6-20

Login Collaboration Diagram .. 6-20

Loading an Analysis Sequence Diagram ... 6-21

Loading an Analysis Collaboration Diagram .. 6-21

Running an Analysis Sequence Diagram ... 6-22

Running an Analysis Collaboration Diagram .. 6-22

ASAC EA Client Package Diagram .. 6-23

DataElement Package Class Diagram ... 6-24

Link Package Diagram ... 6-28

Server Package Diagram .. 6-31

Model Package Diagram .. 6-34

Tree Package Diagram ... 6-38

Desktop Package Diagram ... 6-41

Frame Package Diagram .. 6-44

TABLES

Table 2-1.

Table 3-1.

Table 4-1.

Table 4-2.

Table 5-1.

Table 5-2.

Table 5-3.

Proposed Development Schedule for the ASAC EA .. 2-2

Contents of ASAC Model Repositories .. 3-1

DSSA Stages ... 4-1

Unified Modeling Language Diagram Definitions ... 4-2

Properties and Methods for Subject Class .. 5-22

Properties and Methods for Observer Class .. 5-23

Properties and Methods for DataStorage Class .. 5-25

ix

Table 5-4.

Table 5-5.

Table 5-6.

Table 5-7.

Table 5-8.

Table 5-9.

Table 5-10.

Table 5-11.

Table 5-12.

Table 5-13.

Table 5-14.

Table 5-15.

Table 5-16.

Table 5-17.

Table 5-18.

Table 5-19.

Table 5-20.

Table 5-21.

Table 5-22.

Table 5-23.

Table 5-24.

Table 5-25.

Table 6-1.

Table 6-2.

Table 6-3.

Table 6-4.

Table 6-5.

Table 6-6.

Table 6-7.

Table 6-8.

Table 6-9.

Table 6-10.

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Properties and

Methods for Specification Class ... 5-26

Methods for Scanner Class ... 5-27

Methods for TransformerSpec Class .. 5-28

Methods for ModelSpec Class .. 5-29

Methods for AnalysisSpec Class ... 5-29

Methods for DataTransformer Class ... 5-31

Methods for Analysis Class .. 5-32

Methods for Model Class .. 5-32

Methods for DataRelationship Class .. 5-33

Methods for DataElementSet Class .. 5-35

Methods for DataElement Class ... 5-36

Methods for DataElementlterator Class 5-38

Methods for Thread Class ... 5-39

Methods for Mutex Class .. 5-40

Methods for Application Class ... 5-42

Methods for Log Class .. 5-43

Methods for CorbaClient Class ... 5-44

Methods for CorbaServer Class .. 5-45

Methods for AnalysisClient Class .. 5-46

Proof of Concept Model Descriptions .. 5-62

ASAC EA Proof of Concept Requirements and Test Procedures 5-63

Summary of the ASAC EA Proof of Concept Test Results 5-64

Properties

Properties

Properties

Properties

Properties

Properties

Properties

Properties

Properties

Properties

and Methods for DataTransformer Class ... 6-10

and Methods for DataRelationship Class .. 6-11

and Methods for Breakpoint Class .. 6-11

and Methods for EventMutex Class .. 6-13

and Methods for ConversionUtils Class .. 6-14

and Methods for AnalysisServer Class .. 6-16

and Methods for AnalysisServer_i Class ... 6-16

and Methods for AnalysisObserver Class .. 6-17

and Methods for DataElementSet Class .. 6-25

and Methods for DataElement Class ... 6-26

X

Contents

Table 6-11. Properties and Methods

Table 6-12. Properties and Methods

Table 6-13. Properties and Methods

Table 6-14. Properties and Methods

Table 6-15. Properties and Methods

Table 6-16. Properties and Methods

Table 6-17. Properties and Methods

Table 6-18. Properties and Methods

Table 6-19. Properties and Methods

Table 6-20. Properties and Methods

Table 6-21. Properties and Methods

Table 6-22. Properties and Methods

Table 6-23. Properties and Methods

Table 6-24. Properties and Methods

for LinkSet Class .. 6-28

for Link Class ... 6-29

for LinkCanvas Class ... 6-30

for Orb Class .. 6-31

for Client Class .. 6-33

for ModelSet Class ... 6-35

for Model Class .. 6-35

for Analysis Class .. 6-37

for AnalysisManager Class .. 6-39

for AnalysisNode Class .. 6-39

for Access Class ... 6-40

for AnalysisDesktop Class ... 6-42

for DataElementSet Class .. 6-42

for MainFrame Class .. 6-44

xi

Chapter 1

Introduction

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION'S

ROLE IN PROMOTING AVIATION TECHNOLOGY

The United States has long been the world's leader in aviation technology for both

civil and military aircraft. During the past several decades, U.S. firms have trans-

formed this position of technological leadership into a thriving industry with large

domestic and international sales of aircraft and related products.

Despite the industry's historic record of success, the difficult business environ-

ment of the past several years has stimulated concerns about whether the

U.S. aeronautics industry will maintain its worldwide leadership position. In-

creased competition, both technological and financial, from European and other

non-U.S, aircraft manufacturers has reduced the global market share of U.S. pro-

ducers of large civil transport aircraft and cut the number of U.S. airframe manu-

facturers to only one. Order cancellations and stretch-outs of deliveries by airlines,

forthcoming noise abatement requirements, and environmental concerns create

additional challenges for U.S. producers and purchasers of aircraft.

The primary role of the National Aeronautics and Space Administration (NASA)

in supporting civil aviation is to develop technologies that improve the overall

performance of the integrated air transportation system, making air travel safer

and more efficient, as well as contributing to the economic welfare of the United

States. NASA conducts much of the basic and early applied research that creates

the advanced technology introduced into the air transportation system. Through its

technology research program, NASA aims to maintain and improve the leadership

role in aviation technology and air transportation held by the United States for the

last half century.

The principal NASA program supporting subsonic transportation is the Advanced

Subsonic Technology (AST) program, managed by the Subsonic Transportation

Division, Office of Aeronautics, NASA Headquarters. In cooperation with the

Federal Aviation Administration (FAA) and the U.S. aeronautics industry, the

AST program develops high-payoff technologies that support the development of

a safe, environmentally acceptable, and highly productive global air transportation

system. NASA measures the long-term success of its AST program by how well it
contributes to an increased market share for U.S. civil aircraft and aircraft compo-

nent producers and the increased effectiveness and capacity of the national air

transportation system.

1-1

NASA's RESEARCH OBJECTIVE

To meet its objective of assisting the U.S. aviation industry with the technological

challenges of the future, NASA must identify research areas that have the greatest

potential for improving the operation of the air transportation system. Therefore,

NASA seeks to develop the ability to evaluate the potential impact of various ad-

vanced technologies. By thoroughly understanding the economic impact of ad-

vanced aviation technologies and by evaluating the use of new technologies in the

integrated aviation system, NASA aims to balance its aeronautical research pro-

gram and help speed the introduction of high-leverage technologies. Figure 1-1

illustrates NASA's research objective.

Figure 1-1. NASA's Research Objective

U.S. aeronautics

industry

Advanced Subsonic Technology
program

Technology integration element

Aviation System Analysis Capability

Develop high-payoff technologies to support a
safe, environmentally acceptable, and highly
productive global air transportation system

Ensure that the technologies NASA develops are
timely and consistent with other developments in
the aviation system

Provide a capability to evaluate the potential
impacts of advanced technologies on the U.S.
economy

GENESIS OF THE AVIATION SYSTEM ANALYSIS

CAPABILITY

Technology integration is the element of the AST program designed to ensure that

the technologies NASA develops are timely and consistent with other develop-

ments in the aviation system. Developing an Aviation System Analysis Capability

(ASAC) is one of the objectives of the technology integration element. With this

analytical capability, NASA and other organizations in the aviation community

can better evaluate the potential economic impacts of advanced technologies.

ASAC is envisioned primarily as a process for understanding and evaluating the

impact of advanced aviation technologies on the U.S. economy. ASAC consists of

a diverse collection of models, databases, analysts, and individuals from the pub-

lic and private sectors brought together to work on issues of common interest to

1-2

Introduction

organizations within the aviation community. ASAC will also be a resource avail-

able to those same organizations to perform analyses; provide information; and

assist scientists, engineers, analysts, and program managers in their daily work.

ASAC will provide this assistance through information system resources, models,

and analytical expertise, and conducting and organizing large-scale studies of the

aviation system and advanced technologies. Figure 1-2 displays this concept.

Figure 1-2. ASAC Process

-tTo_s ar_ n_c_s ._,_ procsm

c rnsth_

Cornmur_J_rs ard

o_lsersus t_Jcl_

GOALS OF THE ASAC PROJECT: IDENTIFY AND

EVALUATE PROMISING TECHNOLOGIES

Developing credible evaluations of the economic and technological impact of ad-

vanced aviation technologies on the integrated aviation system is the principal

objective of ASAC. These evaluations will then be used to help NASA program

managers select the most beneficial mix of technologies for NASA investment,

both in broad areas, such as propulsion or navigation systems, and in more spe-

cific projects within the broader categories. Generally, engineering analyses of this

kind require multidisciplinary expertise, use several models of different compo-

nents and technologies, and consider multiple economic outcomes and techno-

logical alternatives. These types of analyses are most effective if they include

information and inputs from organizations and analysts from different parts of the

aviation community. In this way, the studies incorporate the expertise of people

around the United States and build acceptance from the start of the research effort.

In addition to identifying broad directions for investments in technology, the pro-

gram must also help researchers at NASA and elsewhere evaluate the economic

potential of alternative technologies and systems. By better informing engineers

about potential markets for technologies and data on how the current system

works, ASAC will help NASA engineers incorporate their customers' needs more

easily into their routine work. These types of problems most likely involve inves-

tigating technical designs for specific aircraft or subsystems that can readily re-

place existing equipment without requiring significant changes to other aviation

components. With such information, researchers could more easily evaluate the

utility of alternative designs and quickly estimate the value of their design con-

cepts. Analysts from industry, government, and universities would also use ASAC

in this way.

1-3

APPROACH TO ANALYZING THE INTEGRATED

AVIATION SYSTEM

The most useful aviation technologies are not necessarily the most technically ad-

vanced. Rather, NASA and industry must invest in the technologies that have the

most promising payoffs--those that clearly demonstrate a capacity for economi-

cally viable performance enhancements--from the perspective of those organiza-

tions that will purchase and operate the technologies.

Because new aviation technologies are introduced into a complex system, the po-

tential impact of any proposed technology must be analyzed from a system-wide

perspective. Otherwise, the potential impact may be overestimated or underesti-

mated because of the unexamined interdependencies with other elements of the

aviation system. Figure 1-3 shows the components of the integrated aviation system.

Figure 1-3. Components of the Integrated Aviation System

In summary, with the ASAC, users can develop credible evaluations of the eco-

nomic and technological impact of advanced aviation technologies on all compo-

nents of the integrated aviation system.

DOCUMENT OVERVIEW

This technical document describes the system development of the ASAC Execu-

tive Assistant (EA). The document builds upon the work presented in the NASA

Contractor Reports #201681, ASA C Executive Assistant Architecture Description

Summary, Eileen Roberts and James A. Villani, April 1997, and #207679, Avia-

tion System Analysis Capability Executive Assistant Design, Eileen Roberts and

James Villani, et. al., May 1998, and it is composed of the following chapters:

Chapter 1---_troduction

Chapter 2----Components of the Aviation System Analysis Capability

1-4

Introduction

• Chapter 3--ASAC Analyses

• Chapter 4--Design and Development Methodology

• Chapter 5--ASAC EA Proof of Concept

• Chapter 6--ASAC EA Beta Version

• Chapter 7--Conclusion.

In Chapters 1 through 3, the genesis and role of the ASAC system is described.

We discuss the objectives of the ASAC system and provide an overview of com-

ponents and models within the ASAC system.

The Design and Development Methodology chapter discusses the Domain-

Specific Software Architecture (DSSA), and the DSSA approach to developing a

system design. The chapter also describes the design tools used for the ASAC EA

system.

The next two chapters, ASAC EA Proof of Concept and ASAC EA Beta Version,

describe the requirements and goals of the ASAC EA system and includes the

ASAC EA system design. The chapters also describe the development environ-

ment and process, the verification, and the testing. We address:

DSSA Stage 4--Develop Domain Models

DSSA Stage 5--Identify Reusable Artifacts.

DSSA stages 1 through 3 and part of stage 4 are detailed in the documents refer-

enced above.

This document has a bibliography and two appendices:

• Appendix A--ASAC EA POC As-Run Test Procedures

• Appendix B--Abbreviations.

1-5

Chapter 2

Components of the ASAC

OVERVIEW

ASAC is a diverse collection of models, databases, analysts, and individuals from

the public and private sectors brought together to work on the issues of common

interest to organizations within the aviation community.

Figure 2-1 shows the major system components of ASAC.

Figure Chapter 2 -1. ASAC System Components

.... im

Model Repositories

(Local and

Remote)

Aviation System

Analysis Capability

Data Repositories

(Local and

Remote)

• __Ira

Document Server

Charts and

Graphs
Spreadsheets

Executive

Assistant

(First Generation)

Predefined /Analyses

]

[Quick Response
l . System

Query Server
Model Server

Related Web Sites

Document

Server

Most ASAC system components exist; others are under development. Two ASAC

components, Document Server and the Related Web Sites are available to the

general public. All other ASAC components are available on a restricted basis.

2-1

InformationabouttheASAC ExecutiveAssistant(First Generation)canbefound
in Aviation System Analysis Capability Executive Assistant Design, referenced in

Chapter 1. Information about the Quick Response System (QRS) and other ASAC

components can be found in the NASA Contractor Report #201680, Aviation

System Analysis Capability Quick Response System Report for Fiscal Year 1997,

Eileen Roberts, James A. Villani and Paul Ritter, March 1998.

ASAC EXECUTIVE ASSISTANT

With the ASAC EA, researchers at NASA and elsewhere can quickly evaluate the

economic potential of alternative technologies and systems. By providing inputs

to and linking the many models and data that the ASAC system will comprise, the

EA will provide an intelligent interface with which the user can perform detailed

analyses. The ASAC EA Proof of Concept (POC) and Beta version development
is the focus of this document.

Table Chapter 2 -1 outlines the proposed development schedule for the EA.

Table Chapter 2 -1. Proposed Development Schedule for the ASAC EA

Item Year Status

Define ASAC EA requirements

Define the ASAC EA

Develop the ASAC EA architecture

Develop the Model Integration Prototype (First Generation ASAC)

Design and develop the ASAC EA Proof of Concept

Design, develop, and deploy the ASAC EA Beta version

Design, develop, and deploy the ASAC EA version 1.0

Refine the ASAC EA

1995

1996

1996

1996-1997

1997-1998

1998

1999

1999

Complete

Complete

Complete

Complete

Complete

Ongoing

2-2

Chapter 3

ASAC Analyses

ASAC MODELS

The ASAC Model Integration Prototype (First Generation ASAC) was fielded in

March 1997. It demonstrated the integration of six First Generation ASAC mod-

els, and was the first step in providing a robust, fully functional, ASAC EA.

NASA and others used the ASAC Model Integration Prototype (First Generation

ASAC) to perform selected economic analysis of aircraft technology and air traf-

fic management improvements.

Additional models have been added to the ASAC Model Integration Prototype

(First Generation ASAC) since its debut. It currently comprises a subset of the

complete ASAC model network.

The ASAC Model Integration Prototype (First Generation ASAC) is available to

authorized ASAC users (password protected). Users employ a World Wide Web

(WWW) browser to access the system.

At present, seven models plus variants of two of the models, are in the ASAC

Model Repositories. The models are listed in Table 3-1. New models will be

added to the repositories as they are developed.

Table Chapter 3 -1. Contents of ASAC Model Repositories

Operating
Model System Comment

ASAC Air Carrier Investment Model

ASAC Air Carrier Network Cost Model

ASAC Airport Capacity Model--Atlanta,
Dallas-Fort Worth, Detroit, Los Angeles,
New York La Guardia

ASAC Airport Delay Model-- Atlanta,
Dallas-Fort Worth, Detroit, Los Angeles,
New York La Guardia

ASAC Flight Segment Cost Model
(Cost Translator)

ASAC Flight Segment Cost Model
(Mission Generator)

ASAC Noise Impact Model

HP-UX

HP-UX

HP-UX

HP-UX

Available via a WWW interface

Available via a WWW interface

Available via a WWW interface

Available via a WWW interface

HP-UX

HP-UX

Windows NT

Available via a WWW interface

Available via a WWW interface

Available via a WWW interface

3-1

SCHEMATIC OF ASAC MODELS

ASAC models are grouped into the following three analytical areas:

1.0 Aircraft and System Technologies

2.0 FAA Air Traffic Management

3.0 Environment.

Each model has a unique number. The number designates the model's analytical

area, e.g., all model numbers that begin with a 2 belong to the FAA Air Traffic

Management (ATM) analytical area. The models outlined in bold are available in
the First Generation ASAC.

ASAC models can be combined to form analyses. For example, an analysis might

comprise the following models:

2.1 ASAC Airport Capacity Model --)

2.2 ASAC Airport Delay Model --)

1.5 ASAC Flight Segment Cost Model-----Cost Translator --)

1.7 ASAC Air Carrier Investment Model.

Model links for each of the three analytical areas are shown in Figures 3-1.

3-2

Aviation System Analysis Capability Models

Figure Chapter 3 -1. ASAC Model Links

1.1 ASAC Air

Cargo Investment

Model

1.3 ASAC Regional

1.0 Aircraft and 1.2 This model was end Commuter Air
System

Technologies combined with 1.3 Carrier Investment
Model

1.4 ASAC Flight

Segment Cost

Model-- Mission

Generator

1.8 WebACSYNT

or FLOPS

i

1.9 NARIM

1,5 ASAC Flight

Segment Cost

Model-- Cost

Translator

1.6 ASAC Air

Carrier Network

Cost Model

1.7 ASAC Air

Carrier investment

Mode

2.1 ASAC Airport 2.2 ASAC Airport

Capacity Model Delay Model

2.0 FAA Air Traffic 2,3 Aircraft/ATC 2.4 LMI Network
Functional Model or

l Approximate Network
Management Analysis Model Delay Model

I 3.0 Environment

2.5 ASAC Air 2.6 ASAC Air

Carrier Operations Carrier Cost-

Model Benefit Model

_[3.1 ASAC Noise
impact Model

2.7 ASAC System

Safety Tolerance

Analysis Model

Analyses Using ASAC Models

The above represented models can be used either alone or in combination to ana-

lyze specific AST program elements. A future NASA contractor report, Aviation

System Analysis Capability Executive Assistant Analyses, will describe specific

analyses that may be incorporated into the ASAC EA system.

3-3

Chapter 4

Design and Development Methodology

As discussed in the NASA Contractor Reports #201681, ASAC Executive Assis-

tant Architecture Description Summary, and #207679, Aviation System Analysis

Capability Executive Assistant Design, the DSSA is being used as a methodology

for the ASAC EA system.

THE DSSA APPROACH

A domain engineering process is used to generate a DSSA. The goal of the proc-

ess is to map user needs into system and software requirements that, based on a

set of implementation constraints, eventually define a DSSA.

There are five stages in the DSSA domain engineering process. Each stage is fur-

ther divided into steps or substages. The process is concurrent, recursive, and it-

erative. Therefore, completion requires several passes through each stage. The

five stages in the domain engineering process are described in Table 4-1.

Table Chapter 4 -1. DSSA Stages

Stage

1

2

3

Title Description ASAC EA phase

Define the scope of the
domain

Define/refine domain-
specific elements

Define/refine domain-
specific design and
implementation constraints

Develop domain models
and architectures

Produce and gather reus-
able work products

Definition of what can be accom-
plished with emphasis on user needs

Similar to requirements analysis with
emphasis on the problem space

Similar to reqtJirementsanalysis with
emphasis on the solution space

Similar to high-level design with
emphasis on defining module and
model interfaces and semantics

Implementation and collection of
reusable artifacts such as code and
documentation

Architecture

Architecture

Architecture

Architecture and
design

Design and
development

DSSA stages 1, 2, 3, 4, and 5 (partial) were defined in the ASAC Executive Assis-

tant Architecture Description Summary and Aviation System Analysis Capability

Executive Assistant Design. An iteration of DSSA stage 4 and the remainder of

DSSA stage 5 are addressed in this document.

4-1

DSSA DESIGN TOOLS

Unified Modeling Language

Object-oriented design (OOD) is a development approach based on the organiza-

tion of entities that have structure and behavior. It promotes the construction of

well-defined systems and facilitates reuse and ease of modification. The Object

Modeling Technique (OMT), used to develop the ASAC Executive Assistant Ar-

chitecture Description Summary, was one method used to cover the system devel-

opment process from the conceptualization phase through implementation. The

author of OMT has collaborated with the authors of other OOD methodologies,

namely Beech and Jacobsen, to create the Unified Modeling Language (UML).

UML is the successor to the past object-oriented design notations and has been

proposed as a standard to the Object Management Group (OMG). UML notation

is used to document the design. The Rational Rose visual modeling tool is used to

automate this process.

A brief description of UML diagrams is found in Table 4-2.

Table Chapter 4 -2. Unified Modeling Language Diagram Definitions

Diagram Description

Use case

Sequence

Collaboration

Package

Class

State

Deployment

Activity

Data flow

A snapshot of one aspect of a system. The sum of all use cases is the external
picture of a system.

An interaction diagram that models message passing behavior between objects.

An interaction diagram that models message passing behavior between objects.

Shows a high-level picture of components (packaged classes) and the depend-
encies among them.

A description of the classes in a system and the interrelationships among them.

Shows all possible states for an object and how the object's state changes as a
result of events.

Shows the physical relationships among software and hardware components in
the delivered system.

Is a flow chart of tasks or methods on a class.

A depiction of the relationships among functions, usually within the problem
domain.

The In'st seven diagrams are used to represent the ASAC EA design in this docu-

ment. The other two diagrams may be used in the future (they are not required at

this point).

The methodology associated with the UML notation is called Objectory, and is

still being developed. Like UML notation, Objectory brings together the best as-

pects of the OMT, Beech, and OOSE (Jacobsen) methodologies.

4-2

Design Methodology

Class-Responsibility-Collaboration Card Technique

A technique called Class-Responsibility-Collaboration (CRC) Card is used to de-

fine the classes and class collaborations. CRC Card technique facilitates the proc-

ess of discovering the real-world objects that make up a system and its public

interfaces.

CRC cards are index cards that record

• suggested classes,

• their responsibilities,

- what the classes know about themselves (knowledge responsibility)

what the classes do (behavior responsibility), and

• their relationship to other classes (collaboration).

CRC cards can optionally record

• class definitions and

• class attributes.

The front and optional back views of a CRC card are shown in Figures 4-1 and

4-2, respectively.

Figure Chapter 4 -1. CRC Card--Front View

Class nammo

Superclass:

Subclass:

Responsibility 1 Collaborative Classes

Responsibility 2 Collaborative Classes

Responsibility 3 Collaborative Classes

Figure Chapter 4 -2. CRC Card--Back View

Definition:

Attributes:

4-3

The CRC cards are used to role-play system scenarios. A person represents a class

and responds to a request from another class based upon what is written on his or

her CRC card. The role-play enables one to

t validate classes,

II, ensure the identification of what the class knows and what the class does,

and

* ensure all class hierarchies are identified.

The CRC card process is depicted in Figure Chapter 4 -3.

Figure Chapter 4 -3. CRC Card Process

Create list of

scenarios from

use cases

_ __h]_____

Assign CRC Cards

(class roles) to
team members

Play out scenarios 4-

Correct CRC

cards and revise

scenarios

Perform final

scenarios

Design Patterns

Design patterns record experience in designing object-oriented software by nam-

ing, explaining, and evaluating important and recurring designs in object-oriented

systems. An example of a design pattern is the Observer pattern, defined by

Gamma, et al., as "a one-to-many dependency between objects so that when one

object changes state, all its dependents are notified and updated automatically."

The Observer, Flyweight, and Strategy design patterns were used in developing

the ASAC EA design.

4-4

Design Methodology

FURTHER READING

For more information about UML CRC cards and design patterns, see the fol-

lowing references:

[1] Fowler, Martin and Kendall Scott, "UML Distilled--Applying the Standard

Object Modeling Language," Addison-Wesley, 1997.

[2] Rational Software Corporation UML Resource Center, "UML Document Set

Version 1.1," September 1997, http://www.rational.com/uml/references/.

[3] Bellin, David and Susan Suchman Simone, "The CRC Card Book,"

Addison-Wesley, 1997.

[4] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides, "Design

Patterns--Elements of Reusable Object-Oriented Software," Addison-

Wesley, 1995.

4-5

Chapter 5

AS AC EA Proof Of Concept
.. :_:: ::.:: :: :: ::_::_:: _ : ::_ _: :: ::_: ::::_::: : :: :}_ :: :: ::: : ;: :::::: _:_:_:_: ::: ::_ _t:_;: :: :::

The DSSA approach was tailored to meet the needs of the ASAC develop-

ment effort. The next two sections discuss each of the applicable areas of DSSA

stages 4 and 5.

A piece of the architecture, referred to as the ASAC EA POC, was developed to

prove the concept of the ASAC EA system. Figure 5-1 shows the context diagram

of the entire system. The POC part of the system is shown by the highlighted box.

This section is built upon the ASAC Executive Assistant Architecture Description

Summary and Aviation System Analysis Capability Executive Assistant Design,

which covered DSSA stages 1, 2, 3, 4, and 5 (partial). The section will concen-

trate on the design, development, and acceptance of the POC.

The POC was successfully demonstrated to and accepted by NASA in March 1998.

Figure 5-1. POC Context Diagram

Templates

1 -" I

............. '::..................I............

/r/ I1

tExscutive Assistant
i
i
...

I TEMPLATE
DEVELOPER

5-1

ASAC EA REQUIREMENTS

Sixty-two requirements have been defined for the ASAC EA. Fifteen of the require-

ments applied to the ASAC EA POC and were tested as a part of ASAC EA POC

development. These requirements are in bold. The ASAC EA POC requirements

plus the requirements in normal text apply to the ASAC EA Beta version. Ten of the

sixty-two requirements are in italics. They will be implemented for ASAC EA ver-

sion 1.0.

The requirements listed in the following sections are grouped into nine areas.

They are:

• Analysis Execution

• Analysis Management

• Analysis Specification

• Distributed Computing

• Error Handling

• General

• Model Specification

• Optimization

• Security.

Analysis Execution

• AE0001 The Analyst shall have the capability to execute an analysis if an

off-line administrator has granted the appropriate permissions.

AE0002 The Analyst shall have the capability to view and modify model

input data at user-defined intermediate steps in the analysis. Any modifi-

cations to the model inputs shall be logged.

Note: In essence, provide the user with the capability to visually inspect

and change data being transferred between models during the execution of

an analysis.

• AE0003 When an analysis is executed, the names of the models that are

executed, as part of that analysis, will be logged to a log file.

• AE00tM When an analysis is executed, its inputs and outputs will be

logged.

5-2

Aviation System Analysis Capability Executive Assistant Proof of Concept

• AE0005 When a model is executed, its inputs and outputs will be logged.

• AE0006 Upon completion of the execution of an analysis, the results will

be presented to the user ff the user is logged into the system.

• AE0007 Analysis and Model outputs shah be viewable in both raw and
converted format.

AE0008 ASAC will provide a message to the user indicating a rough esti-

mated time required to execute an analysis. Note: This will be a very rough

estimate, as there are currently no plans to perform an interrogation of net-

work and system(s) loading at the time of execution to provide a better esti-

mate, not to mention the affect of data set size on model execution time.

• AE0009 ASAC EA shall support the execution of analyses in the "back-

ground" after users have logged off of the system.

• AE0010 The ASAC EA shall optionally mail a notification of analysis com-

pletion or suspension to the user, if the user is not logged into the system.

• AE0011 Users shall be able to cancel the execution of an analysis at any

user pre-defined intermediate step.

AE0012 Users shall be able to log back in and check the progress of, or can-

cel "active" analyses for which they have the appropriate permissions. When

an analysis finishes, it shall remain "active" until the users views its outputs.

• AE0013 Analyses can be restarted from the beginning after their execution
has finished or been canceled.

AE0014 Users shall be able to set breakpoints on any data relationship.

Breakpoints shall be settable before or after data conversion occurs in the

data relationship.

• AE0015 Users shall be able to set preferences regarding e-mail delivery of var-

ious status messages that can get sent when they are not logged into the system.

Analysis Management

• AM0001 The capability shall be provided to create an analysis by using
off-line tools.

• AM0002 The Analyst shall have the capability to view an existing analysis

if an off-line administrator has granted the appropriate permissions.

• AM0003 The capability shall be provided to update an analysis by using

off-line tools.

5-3

• AM0004 The Analyst shall have the capability to delete an analysis if an

off-line administrator has granted the appropriate permissions.

• AM0005 The Analyst shall have the capability to copy an analysis if an

off-line administrator has granted the appropriate permissions.

• AM0006 The capability shall be provided to store an analysis to the server

for private or public use by using off-line tools.

AM0007 The Analyst shall have the capability to store the results of an

analysis to the server for private or public use if an off-line administrator

has granted the appropriate permissions.

Analysis Specification

• AS0001 An analysis may contain one or more models or analyses.

• AS0002 Analyses may have default input values.

• AS0003 Default analysis input values may be overridden by the user.

Distributed Computing

• I)C0001 ASAC will accommodate operation of its models at remote sites.

• DC0002 ASAC EA shall provide the capability to allow analysts to run

more than one analysis concurrently.

• DC0003 ASAC EA shall support the concurrent execution of more than

one instance of the same analysis on the same or different machines.

• DCO004 ASAC EA shall support the concurrent execution of more than
one instance of the same model on the same or different machines.

• DC0005 The physical location of the models shall be transparent to the
ASAC EA.

DC0006 ASAC EA shall support a distributed application server model

which allows multiple clients and servers to be located on different physi-
cal host machines.

• DC0007 ASAC EA shall allow users to run more than one analysis

simultaneously.

5-4

Error Handling

4

General

EH0001 The user shall be notified if the web server is not available (han-

dled by the browser)

• EH0002 The user shall be notified if the analysis server is not available.

• EH0003 The user shall be notified if a model server is not available.

• EH0004 The user shall be notified if the analysis server encounters a fail-

ure during analysis execution.

• EH0005 The user shall be notified if a model server encounters a failure

during model execution.

• EH0006 The user shall be notified if an invalid data type or value for

analysis/model input is specified.

• EH0007 The user shall be notified if the database is not available or if a

database access error is encountered.

• GE0001 The user application will have an intuitive graphical user inter-
face that adheres to the IBM CUA standards.

Model Specification

• MS0001 Models shall have valid default values upon initialization (when

added to an analysis).

• MS0002 An off-line administrator shall have the capability to add new

models to the system by:

Developing (or adding developed) models that match a well-defined

interface.

Creating model specifications in a to be determined database that

specifies the model parameters, e.g. inputs, outputs, and description.

Writing and adding model wrappers that translate/map the well-

defined model interface data element sets (DESs) to the model-specific

interface for the model being added to the system (i.e., translators from

DESs to model inputs and translators from model outputs to DESs).

5-5

Optimization

Security

• MS0003 Models may have default input values.

• MS00_ Default Model input values may be overridden by the user.

• MS0005 EA model inputs may be an ASCII file.

Note: Optimization requirements will not be implemented for the beta, but

will be designed and the necessary hooks will be implemented to support

implementing it at some point in the future if required.

OPO001 The optimizer shall determine the number of times an analysis

needs to run in order to achieve the specified goal.

OPO002 The EA shall provide an optimizing tool that allows users to

specify a goal (e.g., minimize analysis output X) and let the system vary a

given set of inputs to achieve the goal.

OPO003 When an analysis is rerun, the number of models that need to be

rerun will be minimized based on the inputs that have changed. For exam-

ple, given five models A, B, C, D, and E, where A = f(B + C) and

B = f(D + E), when an input of E is changed, only B will be rerun (C and

D will not be rerun).

OPO004 Optimization can only take place on an analysis, not an individual

model or arbitrary set of models.

OPO005 The optimizer shall create a log containing convergence history

and other relevant information which can be presented to the user for review.

OPO006 The ASAC EA shall support running an analysis a specified

number of times and using a different set of pre-specified inputs for each

iteration (i.e., table generation).

SE0001 An off-line system administrator will define the level of authori-

zation for analyses and scenarios on a per-user or per-group basis.

SE0002 The owning user shall have permissions to view and execute an

analysis if an off-line administrator has granted the appropriate permissions.

SEO003 The owning user shall have the permission to grant or revoke

view, execute, delete permissions to other users, provide that the owning

user has "View," "Execute", and "Delete" permissions, respectively.

• SEO004 The owning user shall be able to transfer ownership to other users.

5-6

SE0005 An off-line administrator shall control user access to models.

SE0006 Users must log into the system.

SE0007 User authentication must be at least as secure as HTTP basic

authentication.

SEO008 It shall be "difficult" for people to run ASAC EA models from

outside the ASAC EA system, i.e., there must be no backdoors which al-

low unauthorized people to run models.

SEO009 Model servers shall be passed user authentication information so

that they can control access (authorization) to specified users or groups.

SE0010 An off-line administrator shall be able to define groups of users

for authorization. Users can belong to multiple groups.

SE0011 Scenarios will have "Read," "Write," and "Delete" permissions as-

sociated with them. Analyses will only have "Read "permissions. Anybody

able to read an analysis can create a scenario for that analysis and execute it.

POC GOALS

The ASAC EA POC was developed to address the high risk areas of the ASAC

EA system. The goals of the ASAC EA POC were to

Demonstrate seamless integration of standalone models

Output of models automatically feeds input of next model(s) in analysis

• Demonstrate integration of models on multiple machines

• Validate system design.

REVIEW AND ITERATE DSSA SUBSTAGE 2-8:

DEFINE ASSUMPTIONS

The assumptions defined in the design phase of the project and described in the

Aviation System Analysis Capability Executive Assistant Design still apply. In addi-

tion, the following assumptions were made during the implementation of the POC:

• An Analysis owns the models and relationships that it contains. When an

analysis is deleted, the models and relationships it contains are deleted as well.

5-7

t All the changeable inputs to a model can be represented as a set of named

data elements. Each data element implements a heterogeneous table, e.g.,

each column can be a different data type. This allows each data element to

represent a scalar value, an array, a record, or a complex table. Each input
to a model must fit into this form.

Analyses will be created off-line, not through a GUI. Users will not be

able to create their own analyses.

Analyses will specify default (fixed) values for all model variables and

will specify which values can be changed by the users, e.g, analysis vari-

ables. Although users can view the values of model variables, they cannot

modify them. Only analysis variables can be changed. This eliminates the

need for a custom user interface for each model.

• When checkpoints are implemented, only variables predetermined by the

analysis specification can have their values modified between analyses.

• Users cannot add or delete the models in an analysis. Users cannot add or

delete data relationships in an analysis.

REVIEW AND ITERATE DSSA SUBSTAGE 2-9:

DEFINE ISSUES

Issues remaining from the Aviation System Analysis Capability Executive Assis-

tant Design are as listed below. Answers have been provided where an issue has

been resolved:

• How does the EA system handle or detect non-termination of models?

There are two conditions that could cause non-termination of a model and,

therefore, analysis deadlock. The first is the model completes but does not

return all necessary data for the model to be considered complete. This is

easily detected in the code. The second condition is the model never re-

turns but instead gets caught in an inf'mite loop caused by poor model de-

sign or implementation. This case is more difficult to detect, and methods

will be investigated during the next phase of development. All other non-
termination conditions should be detected and handled as errors.

• How is data passed among components? Pass the data or data file name?

Data is passed directly between components to avoid having to depend on

multiple communication protocols, i.e., CORBA plus a file transfer protocol.

• Should multiple processes be spawned for the analysis application, or

should there be separate invocations of the program?

5-8

..Aviation.syste m Analysis CapabilitY Executive Assistant proof of Concept

For the ASAC EA POC, separate invocations of the Analysis application

exist. For the Beta version and full ASAC EA system, each analysis will be

a separate process (or thread) spawned by the analysis server application.

• What are the space constraints on user systems (maximum size for the user

application)?

Space constraints will be examined during next phase of development.

• What is the target size of the analysis application?

The target size will be examined during next phase of development.

New issues have been identified during ASAC EA POC development. They are:

• Should customer proprietary models be hosted on LMI servers?

Customer proprietary models will not be hosted on LMI servers in order to

minimize the cost of implementing ASAC security and to maximize cus-

tomer protection. Customers will maintain and host proprietary models in

their respective organizations so the models will be subject to their internal

security protection. Interaction between ASAC and proprietary models
hosted on customer servers not collocated at LMI will be enabled via

file/database transfer from the customer to ASAC and return, and/or ap-

propriate customer legacy model wrapper and ORB software. Customer

models hosted on LMI servers will be protected to the same level of secu-

rity as all other models hosted on the LMI servers.

In the absence of a currently available security solution, such as a CORBA

level 2 security service, is providing a completely secure environment in a

distributed system such as ASAC EA infeasible. What security should be

provided for the ASAC EA system?

The level of security for the ASAC EA system will be username and pass-

word passed over the network. This is the level of protection offered by

the majority of internet-based applications., i.e., telnet, ftp, http, and pop3.

• Is optimization at the analysis level (across models) necessary?

We will not implement multimodel optimization in the ASAC EA POC or

Beta version; however, we will not preclude optimization from being im-

plemented in the future (we will consider optimization in our high-level

design so future implementation will not be disruptive to the system).

Do we use a database or some other mechanism (fiat files) for storing

analysis and model specifications? If we use a database, is it relational,

OO, or a hybrid?

5-9

DSSA

Storage mechanisms will be examined during next phase of development.

4 Given the name of the data transformer specification, how does the pro-

gram determine if it is a model specification or analysis specification

without detailed understanding of the differences between those two files?

The specification identification will be examined during next phase of de-

velopment.

• When a model fails because of an error, how is the model' s parent analysis

notified? (How do we handle errors in a multithreaded environment?)

Error notification will be examined during next phase of development.

STAGE 4--REFINE POC DOMAIN MODELS

Domain models that were developed in DSSA substages 4-3 to 4-8 of the domain-

engineering process and documented in the Aviation System Analysis Capability

Executive Assistant Design were refined during POC development. The domain
models that were refined are:

• 4-3 Use case diagrams

• 4-4 Interaction diagrams

Sequence diagrams

Collaboration diagrams

• 4-5 Package diagrams

• 4-6 Class diagrams

• 4-7 State diagrams

• 4-8 Deployment diagrams

Thirteen classes were defined and described during POC design. They are:

• Subject,

• Observer,

• DataTransformer,

• Analysis,

• AnalysisSpec,

• Model,

• ModelSpec,

• DataRelationship,

• DataRelationshipSpecification,

5-10

..Avia!io n System Analysi s Capabi!i Exec utiv e Assist ant Proof of ConcePt

• DataElement,

• DataElementSet,

• DataConverter, and

• DataStorage.

A number of new classes were added during implementation of the POC. The

majority of the classes are infrastructure or utility classes, which help encapsulate

required functionality. Some classes were added to encapsulate and factor out

common functionality that existed in more than one previously defined class.

The new classes are:

• Log,

• Application,

• CorbaClient,

• CorbaServer,

• DataStorage,

• Specification,

• Scanner,

• TransformerSpec,

• ModelSpec,

• AnalysisSpec,

• Thread,

• Mutex,

• AnalysisClient,

• ModelWrapper,

• ModelWrapper_i,

• ModelServer,

• DataElementlterator,

• Evaluate.

5-11

Theseclasseswill bediscussedin moredetail throughoutthischapter.

DSSA Substage 4-3" Develop Use Case Diagrams

Use Case diagrams are used to show a typical interaction between a user and the

system. The Use Case diagram for the POC is shown in Figure 5-2. It illustrates

that a user will be able to select an analysis, start an analysis, and obtain the re-

sults from the analysis.

Figure 5-2. POC Use Case Diagram

z _lelect Analysis
/

J

/
j,

J Start Analysis
ReturnResults

Analyst Run Analysis

DSSA Substage 4-4: Develop Interaction Diagrams

Interaction diagrams are diagrams that describe how groups of objects collaborate.

These diagrams usually capture the behavior of a single Use Case. The two types

of Interaction diagrams are sequential diagrams and collaboration diagrams. Se-

quential diagrams and Collaboration diagrams give the same temporal informa-

tion, but are shown in two different ways. Objects in a sequence diagram are

shown as a box with a dashed line below it that represents the objects lifeline.

Each message is represented by an arrow between two lifelines. Objects in a col-

laboration diagram are shown as icons and the message is represented by arrows
between two icons.

Interaction diagrams were developed for four areas. They are:

• Building an Analysis,

• Building a Model,

• Building a DataRelationship between two DataTransformers,

• Running an Analysis.

5-12

Aviation System Analysis Capability Executive Assistant Proof of Concept

BUILDING AN ANALYSIS

Figure 5-3. Building an Analysis Sequence Diagram

crealeAnalysm(name) _>

I !
__ I

crute retneve (]

" getN ext DstaT rlmsformer

• get Nextl_ta Retst Ionshlp

create - -_

* QelN extlnpulDehiEleme nt

i_lD_aElement

t_l_ljJL_ 1 [ArIlvms Inout & OLal3ut ! I B1_dlgQlh_ [_a_li_ggl_Q 7

* gelN exlOut:putDataE _emen t

eddDql_Element

getTimeEetimate

mlnput reg nit eK:Yoeerve r

_J

Figure 5-4. Building an Analysis Collaboration Diagram

14:

J

Rela#onship:[EA_DataRe_tloqshlp

5: createDataTranstorme¢ 2: create

_ __ 4: * getNextDataTransformer
6: * getNextDataRelatlonship

//_\ 8: "getNextlnputDataElement

t l 10: ° getNextOutputData Etement

[I 12: getTimeEsfim_e

[Anahts_s : EA Analys_s i

//

//

// 7: create

///_/
,/

/

AnalysL.S Spec : EA _AnalysisSpec

9: addDat_Elen",e_

11 : eOdDataElement

\ 13: ml_put.mglsterObserver

\,
\\

\
\

Analy_s Input & Output : EA DatsElementSet

: EA DstsStora._e

5-13

BUILDING A MODEL

Figure 5-5. Building a Model Sequence Diagram

F tur_btm

L L

ereateMoaen(name)

!
J

er_tte

* getNeacU nput DataElement

addDataElement

• getNextOutputDstaElement

addOataElement

ge_AodelNer'ne

mlr3_t, reglsterOblle_er

5-14

Aviation System Analysis Capability Executive Assistant Proof of Concept

Figure 5-6. Building a Model Collaboration Diagram

Analysis : EA Analysis
i

1: createModel(name)

!
1°:4 V

Model: EA ModelProxy i

2: create

4: * getNextlnputDataElement
6: * getNextOutputDataElement

8: getModelName

---_ _ Model SD_C : EA ModelSpec

J

5: addDataElement

_/ 7: addDataElement9: mlnput.registerObserver

V
i Model Input & Outout : EA DataElementSet

I
=3; retrieve ()

]

i_ Data Storaoe : EA DataStoraoe]
J

5-15

BUILDINGA DATARELATIONSHIP BETWEEN TWO DATATRANSFORMERS

Figure 5-7. Building a DataRelationship Between Two

DataTransformers Sequence Diagram

r- DT1 ;EA Da_] _iA_ _ I D_I_ [Traneformer DT2 : EA Data I_ES=J L Transformer - ,
L

create(DT1, DT2) _,, gel:Patent ()

gotPw'ent () U

_nput =getOtaput()

mOulput = getlnput ()

[else DT2.parent == DTI]

mlnput = getlnput

mOutput = geflnput _!.

[else DTl.parent = DT2]

mlnput = getOtaput

mOutput= getoutma _

[else DT1 = DT2]

mlnput = getlnput

mOutput= getOutput

mlnput .regism_rver

L.J

5-16

Figure 5-8. Building a DataRelationship

Between Two DataTransformers Collaboration Diagram

• 1l Analysis : EA Analysis

1: create(DT1, DT2)

A =

13:

• 1! Data Relationship : EA DataRelationship

L

isterObserver
I
i

DT1 :EA DataTransformer]

JJ
j/

J
J

_J

..... 2: getParent ()
_J 4: mlnput = getOutput ()

j1_ 6: mlnput = getlnput ()

z 8: mlnput = getOutput ()
J 10: mlnput = getlnput ()

12: mlnput.re!

Input DES : EA DataElementSet J

\ 3: getParent ()5: mOutput = getlnput ()
"_ _\ 7: mOutput = getlnput ()

"_ 9: mOutput = getOutput ()

_11 : mOutput = getOutput ()

l DT2 : EA Dat_Tmnsformer

5-17

RUNNING THE ANALYSIS

Figure 5-9. Running the Analysis Sequence Diagram

i J t J

• ,.,.0n_hir,_

5

• Ntl)a_aE_m

L_

i w(_

li

--___ J

m

Ira_ M1 oul_t

_7

L

- L.J

5-18

Aviation System Analysis Capability Executive Assistant Proof of Concept

Figure 5-10. Running The Analysis Collaboration Diagram

L]

,/

//

/

1: - oN_lm

// k
Q evl.aleS_ ()

S "e,_Dt_km_r_
I_ e_v.amOsaw{)

12 *e[_m

//

/

/
/J

21:" _Stlde ()

/
//

//

1o:• _mtaE_o_t

lS:_()

1-

1 "j/

//

i///
/

// 17 wa_uIRImtm ()
/// 1e: oe_Ds_E_ment

11 - n_e'_<:;-4n_ /

DSSA Substage 4-5" Develop Package Diagrams

Package diagrams are used for readability purposes only. When a design becomes

large, it is convenient to separate groups of classes into separate packages. The

POC design has been divided into nine class packages:

• Subject Observer

• Specification

• Data Transformer

• Data Element

• Threads

• Utility

• Application

• Analysis Client

• Model Server.

5-19

Figure5-11showsthePOCpackagediagram.Thedependenciesamongthe
classesaredenotedby thedashedlines.Thedependenciesarethefollowing:

• TheDataTransformerpackagedependsontheSpecificationpackageto
readin AnalysisandModelspecifications.

* TheDataTransformerpackagedependsontheDataElementpackageto
holdtheinputs andoutputsfor datatransformers.

TheDataTransformerandDataElementpackagesdependon theSubject
Observerpackageto notify DataTransformers,DataRelationships,andData
ElementSetsof statechangesin otherobjectsthattheydependon.

TheDataTransformerandDataElementpackagesdependon theThreads
packageto executemodelsin parallelandto providesynchronizationbe-
tweenthreadsandmutuallyexclusiveaccessto shareddata.

• TheDataTransformerpackagedependson theUtility packagefor miscel-
laneousutility functions.

• TheApplicationpackagedependson theThreadspackagefor implement-
ing a thread-safeasynchronoussignal-handlingthread.

TheAnalysisClientandModelServerpackagesdependon theApplica-
tionpackageto handlebasicapplicationfunctions,suchassignalhandles,
errorlogin, command-lineparsing,aswell asfunctionsspecificto
CORBAclientsandservers,suchasinitializationandobjectregistration.

TheAnalysisClientpackagedependsontheDataTransformerpackageto
coordinatetheexecutionof analysesconsistingof multiplepotentiallydis-
tributedmodels.

5-20

Figure 5-11. Package Diagram

_Packa e
Ut' "ty g

i

Specification _,,

Package

//i'

mer

\

Subj_ct Observer i

ackage 1

\

\

t Data Element

// [Package

// f

-\

A_--_nalysisClient

Package

ASAC EA POC

I
!

I_%p,,.tioo--q
Package /

___ i
/

i
/ i

// i

J

---1 Model Server

Package

DSSA Substage 4-6: Develop Class Diagrams

Class diagrams are used to illustrate class models and their relationships with

other classes. The class diagrams will be shown with their package.

SUBJECT OBSERVER PACKAGE

The Subject Observer package contains two classes, which define a subject-

observer pattern (also called publish-subscribe or observer-observable). Each

subject may have any number (zero or more) of observers and each observer may

receive notifications from any number of subjects. The class diagram is shown in

Figure 5-12.

5-21

Figure 5-12. Subject Observer Class Diagram

Subject

F_A_Subject
=bmState : EA State
dl_mObservers : list<EA_Observer*>

"EA_Subject()
*~EA_Subject()
_registerObserver()
"getState()

$'_setState()
dll_notifyObservers()

I <<interface>>
EA_Observer

_ 'l_EA_Observer()

_~EA_Observer()
_notifyChange()

The subject is a superclass that defines the properties of an object being observed.

A subject may have any number of dependent observers. All observers are notified

when the subject undergoes a change in state. A list of properties and methods for
this class can be found in Table 5-1.

Table 5-1. Properties and Methods for Subject Class

Private Properties

reState : EA_State The current state of the subject.

mObservers : The list of observers that the subject notifies when its state changes.
list<EA_Observer*>

Public Methods

EA_Subject (initState : Constructor.
enum EA_State =
WAITING) : EA_Subject

~EA_Subject 0 : Destructor.

registerObserver (obs : Registers an observer object as an observer of this subject.
EA_Observer&) : void

getState 0 :enum Gets the current state of the subject.
EA_State

Protected Methods

setState (newState : enum Sets the state of the subject, and notifies its observers that the state
EA_State) : void has changed by calling the notifyChange method on each observer.

Observer

The Observer defines an updating interface for objects that should be notified of

changes in a subject's state. In response to notification, observers query the sub-

ject to synchronize its state with the subject's state. A list of properties and meth-
ods for this class can be found in Table 5-2.

5-22

Table 5-2. Properties and Methods for Observer Class

Public Methods

EA_Observ er 0 : Constructor.
EA_Observer

-EA_Observer 0 : Destructor.

not@Change (subj •
EA_Subject&) • void

Called by a subject to notify its observers that its state has changed.

SPECIFICATION PACKAGE

The Specification package contains classes that support reading and writing of

analysis and model specifications. An analysis specification is a file or other unit

of data that contains the information (e.g., inputs, outputs, names of models, rela-

tionships) necessary for creating an analysis that can be executed. Similarly, a

model specification contains the information necessary for creating and executing

a model as part of an analysis. The class diagram is shown in Figure 5-13.

5-23

Figure 5-13. Specification Package Class Diagram

-_ o,_ i

l

vEn_yl_tlm : _r

lpuComm_ntD_im : ohlr

,lln_aF.nt, H)

rJ

_N_m_ : ran,rig

I

DataStorage Class

The DataStorage class provides an interface to a data stream and enables objects
to store or retrieve themselves from the stream. The stream could be stored in a

file, an entry in a database, etc. Objects that inherit from the DataStorage class

must define exactly how the object is stored and retrieved. A list of properties and

methods for this class can be found in Table 5-3.

5-24

...A viation system Analysis Capability Ex e cut ive Assistant Proof of Con cept

Table 5-3. Properties and Methods for DataStorage Class

Private Properties

mFilename • string] The name of the file to read data from and write data to.
I

Public Methods

Constructor.EA_DataStorage

(filename : const
RWCString&) :

EA_DataStorage

retrieve 0 "void

-EA_DataStorage 0

store 0 "void

Protected Methods

Operation that retrieves data objects. Calls doRetrieve on the sub-

class and passes it the input stream.
Destructor.

Operation that storess data objects. Calls doStore on the subclass

and passes it the output stream.

doRetrieve (input"

istream&) • void

doStore (output'
ostream&) • void

getFilename 0 "
const RWCString&

Virtual function that defines how to read the data from the input

stream. Must be defined by the subclass.

Virtual function that defines how to write the data to the output

stream. Must be defined by the subclass.

Returns the filename that the object is stored to and retrieved from.

Specification Class

The Specification class defines the basic format for all specifications and defines

how the specifications are stored and retrieved via the DataStorage interface that it

inherits. A specification is made up of one or more sections or entries that it

parses using the Scanner class. The "getEntry" method provides access to the data

in each section of the specification. A list of properties and methods for this class

can be found in Table 5-4.

5-25

Table 5-4. Properties and Methods for Specification Class

Private Properties

mEntries : map<string, The data associatedwith eachsection (entry) of the specifica-
string> tion, stored as name/value pairs.

Public Methods

EA_Specification (name : Constructor.
const RWCString&) :
EA_Specification

getNumEntries 0 : int Returns the number of entrie (named sections) that

~EA_Specification 0 " Destructor.

getEntry (name : const Returns the data associated with the specified section (entry)
RWCString&, value : of the specification.
RWCString&) : bool

Protected Methods

doRetrieve (input : Reads and parses the specification from the given input
istream&) : void stream.

doSt'ore (output : Writes the specification to the given output stream.
ostream&) : void

Scanner Class

The Scanner class provides the ability to parse an input stream that contains

name/value pairs in a specified format. The Scanner class is used by the Specifi-

cation class to parse model and analysis specifications, as well as by the Da-

taRelationship class to process data relationship specification files. A list of

properties and methods for this class can be found in Table 5-5.

5-26

Aviation System Analysis Capability Executive Assistant Proof of Concept

Table 5-5. Properties and Methods for Scanner Class

Private Properties

ml::ntryDelim : char The delimiter that specifies the end of a section or entry.

mNVPairDelim : char The delimiter between the name of a section or entry and its
value.

mCommentDelim : char The delimiter which indicates the beginning of a comment.

mlnputStream : istream& The input stream which the scanner reads from.

Public Methods

Constructor.EA_Scanner (input" is-
tream&, entry" char = ';',
nvPair : char = '=', com-

ment • char = '#') •
EA_Scanner

skipComments 0 "is-
tream&

-EA_Scanner 0"

nextEntry (name •

RWCString&, value •
RWCString&) • istream&

nextEntry (value •
RWCString&) • istream&

Skips blank lines and lines that begin with the comment de-
limiter.

Destructor.

Gets the name and value of the next entry in the specification
and returns true if a complete entry was found.

Reads data (skipping comments) until an end of entry delim-
iter is found.

TransformerSpec Class

The TransformerSpec class inherits from the Specification class and encapsulates

the understanding of entries that are common to both model and analysis specifi-

cations. In particular, the TransformerSpec class parses the sections that define the

input and output data elements for a model or an analysis. A list of properties and

methods for this class can be found in Table 5-6.

5-27

Table 5-6. Properties and Methods for TransformerSpec Class

Private Properties

mDescription : string A description of the data transformer.

mlnputs : A list of the inputs that this data transformer requires.
list<EA_DataElem Rec>

mOutputs : A list of the outputs that this data transformer produces.
list<EA_DataElem Rec>

mlnputlterator : iterator Iterator used to iterate over the list of input data elements.

mOutputlterator • iterator Iterator used to iterate over the list of output data elements.

Public Methods

resetElementlterators 0 : Resets the iterators to the beginning of the lists.
void

-EA TransformerSpec 0 : Destructor.

getNextlnputDataElement Gets the next input data element from the specification.
(element :

EA_DataElemRec_t&) :
bool

getNextOutputDataEle-
ment (element :

EA_DataElemRec_t&) :
bool

Gets the next output data element from the specification.

Protected Methods

EA_TransformerSpec Constructor.

(name : const
RWCString&) :
EA_TransformerSpec

ModelSpec Class

The ModelSpec class manages specification data for a particular model. A list of

properties and methods for this class can be found in Table 5-7.

5-28

Table 5-7. Properties and Methods for ModelSpec Class

Private Properties

mModelObjName : string The name of the CORBA model object to call in
order to run this model.

Public Methods

getModelName 0 : const
RWCString&

EA_ModelSpec (name : const
RWCString&) : EA_ModelSpec

isModel (name : const

RWCString&) : bool

Returns the name of the CORBA model object to

call to run this model.

Constructor.

Returns true if the specified string is the name of a

model specification.

AnalysisSpec Class

The AnalysisSpec class manages specification data for a particular analysis.

A list of properties and methods for this class can be found in Table 5-8.

Table 5-8. Properties and Methods for AnalysisSpec Class

Private Properties

mTransformers :

list<vector<string>>

mRelationships :
list<vector<string>>

mTransformerlterator : iterator

mRelationshiplterator : iterator

Public Methods

The list of data transformers that make up the analy-

sis.

The list of data relationships that the analysis con-

tains.

Iterator used to iterate over the list of data trans-

formers.

Iterator used to iterate over the list of data relation-

ships.

getNextDataTransformer (name :
RWCString&, id : RWCString&) :
bool

EA_AnalysisSpec (name : const

RWCString&) : EA_AnalysisSpec

getNextDataRelationship (from :
RWCString&, to : RWCString&,
name : RWCString&) : bool

isAnalysis (name : const
RWCString&) : bool

Gets the name of the next data transformer that is

part of the analysis from the specification.

Constructor.

Gets the next data relationship that is part of the

analysis from the specification.

Returns true if the specified string is the name of an

analysis specification.

5-29

DATA TRANSFORMER PACKAGE

The Data Transformer package contains the classes that execute an analysis. The

Subject, Observer, DataElementSet, and Thread classes are shown in the class

diagram to illustrate their relationships with the classes in this package. They are

not a part of the Data Transformer package. All DataTransformers inherit from the

Subject and Observer classes and contain two DataElementSets; one acts as its

input, and the other its output. An Analysis is a special kind of DataTransformer,

which contains other DataTransformers (models and analyses) and DataRelation-

ships. DataRelationships act as links in an analysis that pass data from one

DataTransformer to the next. The class diagram for the Data Transformer package

is shown in Figure 5-14.

Figure 5-14. Transformer Class Diagram

EA SU_X

.......

L

__)

I _m_wEbmm_ } I 1

J

! _EA D_aTmm_mw_) _

!-2-
[

T

L

}

_ddOef_Trr,_orrner_)

/
/

DataTransformer

The DataTransformer is an abstraction for a class that transforms input data values

into output data values. The class has two DataElementSets that contain the input

and output values of the transformer. The DataTransformer "watches" its input

DES and automatically performs the transformation when all of its inputs have

5-30

Aviation System Analysis Capability Executive Assistant Proof of Concept

been set (i.e., the input DES changes to the "ready" state). A list of properties and
methods for this class can be found in Table 5-9. The DataTransformer inherits

from the Subject and Observer classes, so it also contains the properties and
methods shown in Tables 5-1 and 5-2.

Table 5-9. Properties and Methods for DataTransformer Class

Private Properties

mParent : EA_DataTransformer* A pointer to the parent of this data transformer or
NULL if it has no parent.

mlnput : EA_DataElementSet The set of data elements that acts as the input to the
data transformer.

mOutput : EA_DataElementSet The set of data elements that acts as the output of
the data transformer.

Public Methods

EA_DataTransformer (spec :
EA_TransformerSpec&, parent :
EA DataTransformer*) :
EA_DataTransforrner

notifyChange (subj : EA_Subject&) :void

~EA_DataTransformer 0 :

Constructor. Initializes the input and output DESes
based on the TransformerSpec. Also registers as an ob-
server to its input DES.

Virtual method from EA_Observer. If the input DES is

ready, start a thread and run the data transformer in it.
Destructor.

getlnput 0 : EA_DataElementSet& Returns a reference to the data transformer's input DES.

getOutput 0 : EA_DataElementSet& Returns a reference to the data transformer's output DES.

getParent 0 : EA_DataTransformer* Returns a pointer to the transformer's parent analysis, or
null if there isn't one.

Analysis

The Analysis class is a data transformer that is made up of other data tranformers

(models or other analyses). The class manages the creation and instantiation of its

data transformers and the data relationships between them. A list of properties and

methods for this class can be found in Table 5-17. The Analysis class inherits

from the DataTransformer class, so it also contains the properties and methods

shown in Tables 5-1, 5-2, and 5-9.

5-31

Table 5-10. Properties and Methods for Analysis Class

Private Properties

mChildren : map<string, EA_DataTransformer> A list of data transformers that make up the body of

the analysis. Each transformer has a name associated
with it.

m Relationships : list<EA_DataRelationship> The list of relationships that are part of this analysis.

mAnalysisName : string The name of the analysis.

mTimeEstimate : string A rough estimate of the time that the analysis will
take to execute.

Public Methods

createAnalysis (name : const RWCString&, Factory method used to create an analysis given an
parent : EA_DataTransformer* = NULL) : analysis specification name.
EA_Analysis*

getTimeEstimate 0 : const RWCString&

-EA_Analysis 0 :

Returns an estimate of the time that this analysis is

expected to take.
Destructor.

Protected Methods

run 0 : void Runs the analysis. Once the analysis has started,

waits until its output DES becomes ready (i.e. all

models have finished and written their output).
Model

The Model class is a DataTransformer that acts as an interface or proxy to a dis-

tributed model application. When the time comes for the Model class to transform

its input data, the Model class passes its inputs via CORBA to a model that runs

on a separate machine. A list of properties and methods for this class can be found

in Table 5-11. The Model class inherits from the DataTransformer class, so it also

contains the properties and methods shown in Tables 5-1, 5-1, and 5-9.

Table 5-11. Properties and Methods for Model Class

Private Properties

mModelName • string | The name of the CORBA model object to call in
order to run this model.

Public Methods

createModel (name : const RWCString&, par- Factory method used to create a Model given a

ent : EA_DataTransformer*) : EA_ModelProxy* Model Specification name.

~EA_ModelProxy 0 : Destructor.

Protected Methods

run 0 " void] Runs the model by passing the inputs from the input

IDES to a CORBA model object and storing its out-

put in the output DES.

5-32

DataRelationship

The DataRelationship class acts as a link between two DataTransformers. It waits

for the one of the DES of the input DataTransformer to be set, gets its data values,

performs any necessary data transformation or conversion, and sets the values in

the one of the DES of the target DataTransformer. A list of properties and meth-

ods for this class can be found in Table 5-12.

Table 5-12. Properties and Methods for DataRelationship Class

Private Properties

mlnput • EA_DataElementSet*

mOutput • EA_DataElementSet*

The DES which acts as the input to the data rela-

tionship.

The DES that the data relationship writes its output
to.

mSpecName • string The name of the data relationship specification (if
any) to use for this relationship.

Public Methods
Constructor.EA_DataRelationship (in :

EA_DataTransformer&, out :
EA_DataTransformer&, specName : const
RWCString& = "") : EA_DataRelationship

notifyChange (subj • EA_Subject&) • void If the input DES is ready, perform the relationship
and set the values of the output DES.

-EA_DataRelationship 0 " Destructor.

DATA ELEMENT PACKAGE

The Data Element package contains the DataElementSet, DataElement, and

DataElementlterator classes and their relationships. The Subject and Mutex

classes do not belong to this package, but are shown in this package to illustrate

their relationship to the DataElementSet class. The class diagram illustrates that a

DataElementSet contains zero or more DataElements and that each DataElement

has a string associated with it which represents its name within the DataElement-

Set. The class diagram for the Data Element package is shown in Figure 5-15.

5-33

Figure 5-15. Data Element Class Diagram

DamEleme

• _nName4 : vector<sUing>

_)mValues : vec_r<vector<sthng>>

_t.abels : w_tor<_'rmg_

#brnUnrm : vm_or,:s'tr_

,IbmT_ : v_:o_< F.A [_teIType>

Fo--rm : vsctor<s1_.

/J_mNumRows : $lze_t

,I_,_N umCob : mxe_t

.IJ._S'tste : EA_Smie

'*EA OaaEkmwmt()

. 'L.EA DaelElewwmt()

_umC_Im()

_em_e()

'JgetDrnsm_n()

tt.sl)

r*getUnh (}

.kge*O_n()

',,_v_o()

,r,.g_vm,._()

_i_miTmb¢_)

• _*n,:,w()

•_ac.ol()

, _,¢,_,m()

'_m_t,Lmb_i()

•_'un b()

'r,_etOome_()

4_ietType()

'_w_tVmtlue()

_etmaze()

i EA SubJ_¢'l

,-__S_b)_t()

] _ret_o_osoP, er()

'_()

EA_12_taEklc_mt_ot

ik_nEl_rr_n_ : map<_ring, EA Dlzt_El_b,

I_mLoak : EA_M_

) _EA_DmatBwn_tS_t()

___ _EA_D,mm_.m_i_t(),_l:)_utBerno_()

I" ' 1 i _,-EA DmmEIomwnt_t()
_ E_,m_t()

_M_tDmaE_t(]

, QgetNumElem4mts()

__ EA _Dlll_km_l_ltorm_or

_nllterlll_r : iterl_ot<ltring+ EA_D_bl.Bemerd>

__ D_aElemontltera_or()

_DW_B_()

't.- EA_DabsBemantl_raeor ()
_Nt()

'_o_oor_or ++()

_etN_no(

L_
_1 _ Itram _ I=_l,a_)

lock '_EA Mutex() t

e,'-EA Mute_()

'_lock()

: eunlock()

DataElementSet

The DataElementSet is a collection of DataElement objects. Each DataElement

object has a name associated with it that is used to refer to the DataElement. Da-

taElementSets also contain a Mutex object that is used to protect the DataEle-

mentSet from simultaneous access by multiple DataTransformers or

DataRelationships. A list of properties and methods for this class can be found in

Table 5-13.

5-34

Aviation System Analysis Capability Executive Assistant Proof of Concept

Table 5-13. Properties and Methods for DataElementSet Class

Private Properties

MElements : map<string, EA_DataElement>

Public Methods

EA_DataElementSet 0 : EA DataElementSet

EA_DataElementSet (names : vector<string>) :
EA_DataElementSet

I An associative array which contains the set of dataelements associated with their names.

Default constructor.

TBD.

GetDataElement (name : const RWCString&) : Return the data element whose name matches the
EA_DataElement* name given.

-EA DataElementSet 0 : Destructor.

AddDataElement (name : const RWCString&) :
EA_DataElement*

DeleteDataElement (name : const RWCString&) :
void

SetDataElement (name : const RWCString&,
value : eonst RWCString&, state : enum
EA_State = READY) : void

EvaluateState 0 : enum EA_State

GetNumElements 0 : size_t

Creates a new data element with the specified name,

adds it to the set, and returns a pointer to it. If the

specified name is already in use, returns null.
Removes from the set and deletes the data element

with the specified name.

Sets the value and state of the specified data element.

If the data element does not already exist, it is created
and added to the DES.

Evaluates the state of the DES, and notifies its ob-

servers if the state has chan_ed.
Returns the number of data elements within the DES.

DataElement

The DataElement class represents a chunk of data that can take one of four forms:

a scalar value, an array of scalar values, a record of scalar values, or a 2-D table of

scalar values in which each column can contain a different data type.Methods are

provided for setting and retrieving the information the DataElement. A list of

properties and methods for this class can be found in Table 5-14.

5-35

Table 5-14. Properties and Methods for DataElement Class

Private Properties

mNames : vector<string> The names of each column of the table.

mValues : vector<vector<string>> The row of values for each column of the table (i.e. a

2-D array).

mLabels : vector<string> The labels for each column of the table.

mUnits : vector<string> The units for each column of the table.

mTypes : vector<EA_DataType> The data types of each column of the table.

mDomains : vector<string> The domains of each column of the table.

mLimits : vector<string> The limits of each column of the table.

mFormat : vector<string> The format of each column of the table.

mNumRows : size_t The number of rows in the table.

mNumCols : size_t The number of columns in the table.

restate : EA_State The current state (set or unset) of the data element.

Public Methods

EA DataElement (rows : size_t = 1, cols : Contructor. Creates a data element with the specified
size_t = 1, state :enum EA_State = number of rows and columns.
WAITING) : EA_DataElement

EA_DataElement (name : const

RWCString&, value : const RWCString&,
state :enum EA_State = READY) :
EA_DataElement

Constructor. Creates a scalar (i.e. lxl) data element

with the given name and value.

~EA_DataElement 0 : Destructor.

getDimension 0 :enum EA_Dimension Returns the dimension of the data element. Returns

either SCALAR (lxl), ARRAY (Nxl), STRUCT

(_1xN), or TABLE (NxN).

5-36

Table 5-14. Properties and Methods for DataElement Class (Continued)

Private Properties

NumRows 0 : size_t

numCols 0 : size_t

getState 0 :enum EA_State

getName (col : size_t = 0) : const RWCString&

getLabel (col : size_t = 0) : const RWCString&

getUnits (col : size_t = 0) : const RWCString&

getDomain (col : size_t = 0) : const RWCString&

getType (col : size_t = 0) : enum EA_DataType

getValue (row : size_t = O, col : size_t = O, units :
const RWCString& = "") : RWCString

getValue (units : const RWCString&) : RWCString

gettable 0 : RWCString

getRow (row : size_t = 0) : RWCString

getCol (col : size_t = O, units : const RWCString& =

....) : RWCString

setName (name : const RWCString&, col : size_t = 0

) :void

setLabel (label : const RWCString&, col : size_t = 0) :
void

setUnits (units : const RWCString&, col : size_t = 0) :
void

setDomain (domain : const RWCString&, col : size_t

= 0) : void

setType (type : enum EA_DataType, col : size_t = 0)
: void

setValue (value : const RWCString&, state : enum

EA_State = READY) : void

setValue (value : const RWCString&, row : size_t, col

: size_t) : void

setState (state : enum EA_State) : void

Gets or sets the various attributes of the data

element.

5-37

DataElementlterator

The DataElementIterator class allows programs to iterate through all the elements

in a DataElementSet. Because the DataElementIterator is a separate object and

maintains its own state, it allows multiple threads to iterate over the same DES

simultaneously. A list of properties and methods for this class can be found in
Table 5-15.

Table 5-15. Properties and Methods for DataElementlterator Class

Private Properties

mlterator : iterator<string, EA_DataElement> The underlyingiterator that this class wraps.

Public Methods

EA_DataElementlterator (set : Constructor. Creates an iterator to iterate over the
EA_DataElementSet&) : elements of the specified DES.
EA_DataElementlterator

getOataElement 0 : EA_DataElement* Returns a pointer to the current data element.

-EA_DataElernentlterator 0 : Destructor.

reset 0 : void Reset the iterator to its initial position and state.

operator ++ 0 : bool Advances the position of the iterator and returns true
if the new position is valid, false if the end of the set

has been reached and the new position is not valid.
getName 0 : RWCString Returns the name of the current data element.

THREADS PACKAGE

The Threads package contains a Thread class and a Mutex class. The classes act

as object-oriented wrappers for POSIX APIs that support basic multithreading.

The Thread class acts as a base class for classes that require a separate thread of

execution in a program. The Mutex class provides a locking mechanism for

classes that can be used by more than one thread at a time and must ensure that

certain operations are executed by only one thread at a time. The class diagram for

the Threads package is shown in Figure 5-16.

5-38

Aviation System Analysis Capability Executive Assistant Proof of Concept

Figure 5-16. Threads Class Diagram

EA_Thread

_,mThread : pthread_t

_EA Thread()
_~EA Thread()
%taa()
_stop()
_join()
_$delay()
_$self()

Prun()
aP$dispatch()

EA_Mutex !

_mMutex : pthread_mutex_t

_EA_MuIex()
4~EA_Mutex()
_lock()
_unlock()
4trylock()

Thread Class

The Thread class acts as a base class for classes that require a separate thread of

execution within a program. The "start" method creates the thread and calls the

"run" method that is provided by the subclass to act as the body of the thread. The

"stop" method cancels execution of the thread and the "join" method provides a

synchronization mechanism by waiting (i.e., blocking the caller) until the thread

has finished. A list of properties and methods for this class can be found in Ta-

ble 5-16.

Table 5-16. Properties and Methods for Thread Class

Private Properties

mThread : pthread_t The id of the underlying POSIX thread.

Public Methods

EA Thread 0 : EA_Thread Constructor.

~EA_Thread 0 : Destructor.

start 0 : void Starts the thread and calls the "run" method defined
by the subclass.

stop 0 : void Cancels (aborts) execution of the thread.

join 0 : void Waits for the thread to finish execution.

delay (secs : unsigned int) : void Pauses the specified number of seconds.

self () : pthread_t Returns the thread id of the thread which calls the
function.

Protected Methods

run 0 : void A virtual function which must be defined by the

subclass to be the body of the thread.

5-39

Mutex Class

The Mutex class provides a exclusive locking mechanism that allows only one

thread at a time to execute a "critical" section of code. The Mutex class typically

is used by classes that act as shared communication mechanisms between two or

more threads. One thread "owns" the mutex at any given time. The "lock" mecha-

nism waits until the current owner is finished, which it signals by calling the "un-

lock" mechanism. The "trylock" method is similar to "lock", but instead of

waiting until the current owner is done it returns false if the mutex is unavailable.

A list of properties and methods for this class can be found in Table 5-17.

Table 5-17. Properties and Methods for Mutex Class

Protected Properties

mMutex : pthread_mutex .t I The id of the underlying POSIX mutex.
I

Public Methods
EA_Mutex 0 : EA_Mutex Constructor.

~EA_Mutex 0 : Destructor.

lock 0 : void Waits the currentownerof the mutex(if any) to
finish, then locks the mutex (i.e. claims ownership).

unlock 0 : void Unlocks the mutex and allows a waiting thread to
lock it and continue execution.

trylock 0 : bool If the thread is unlocked (i.e. no other thread is cur-
rently using it), locks the thread and returns true.
Otherwise returns false.

UTILITY PACKAGE

The Utility package contains the Evaluate class, which is used by the DataRela-

tionship class to evaluate the expressions that make up a data relationship specifi-

cation. The class diagram for the Utility package is shown in Figure 5-17.

Figure 5-17. Utility Class Diagram

t EA_Evaluate

_mExpression : string

q_mDataElements : EA_DataElementSet&

`tevaluate()

'tEA_Evaluate()
alPevalExpression()

_l'evalConditional()

aPevalLogicalOr()
41PevalLogicalAnd()

IPevalEquality()
_evalRelational()
tev=alAddition()

aPevalMultiply()
dPevalUnary()

4PevalPrimary()

l=IPevalldentifler()

5-40

Aviation System Analysis Capability Executive Assistant Proof of Concept

Evaluate Class

The Evaluate class is used to evaluate C-style mathematical expressions, which

are used in data relationship specifications. The "evaluate" method returns the

numeric value of the expression. The input DES of the data relationship is used to

look up the values of variables that occur in the expression.

APPLICATION PACKAGE

The Application package contains classes that encapsulate the basic behavior of

CORBA client and server applications. The package also contains an Application

class that is a parent class of the CORBA client & server classes. The Application

class encapsulates basic application-level behavior, such as signal handling,

command-line parsing, and error logging. The class diagram for the Application

package is shown in Figure 5-18.

Figure 5-18. Application Class Diagram

F.AThread

{from Thmldl P_41ge)

_EA_Thread()

'k-EA_Thread()

%raM()
%top()
%join()

_$delay()

qSse.()
,_Prun()
:d'Sdispatch()

r

sProcesstD : long

sAppPtr : EA_Applicstion*

sUserLogin : string

mSignalz : sigsst t

/_mAppName : string

4_mAppDsta : string

t_,mOptions : map<string, string>

%EA_Applicstion()

_- EA_Al_licstion()

_l_etUserLogin()

'lk_stAppName()

• gstAppData()

'_gstNumOptions_)

• getOptionStste()

• getOptionValue()

• execute()

_,_handleSig nst()

_parseCmdL.Jne()

8run()

. a_DSdispstchSignal()

M_$isOption()

I EA_Cort)aCliont

"_,_ sORB : COR_BA::ORB_ptr

• EA_Corb=,Client()

'tStoStdng()

Lt-EA_CorbaClient()

I 't_$toObject()

[q$gstOrbService()

initializes

__Log

sFileName : string

sLevel : int

sStmam : ostream

_I_sst LogLevel()

_$addLogLevel()

_$subLogLevel()

• '$isEnabled()

_sstLogFile()

i _°$1ogStream()

_dmeStamp()

%c_.nul_)

-- EA_CorbaSen/er

4_mCorbaObjects : list<CO R BA::Object_ptr>

• EA CorbaServer()

• ~EA_CorbaServer()

• addCorbaObject()

%xecute()
_bhandleSignal()

l$shutdown()

5-41

Application Class

The Application class provides basic application-level functions, such as signal

handling, command-line, parsing, and initialization of the application error log. It

has a separate thread (by inheriting from the Thread class) which provides han-

dling of asynchronous signals. Both synchronous and async signals are dispatched

to the "handleSignal" method, which can be overridden by subclasses. Various

methods exist for getting command-line information, such as whether an option

was given or not, or the value of an option that takes a parameter. The Application

Class also defines an "execute" method that must be provided by the subclass to

define the body of the application. A list of properties and methods for this class

can be found in Table 5-18.

Table 5-18. Properties and Methods for Application Class

Private Properties

sProeosslD : long The process id of the current executable.

sAppPtr : EA_Application*

sUserLogin : string

Static variable which points to the single application

object in the program.
The login (i.e. id) of the user that ran the current
executable.

mSignals : sigset_t The set of asynchronous signals which the applica-
tion handles.

mAppName : string The file name of the current executable program
(i.e. argv[0}).

mAppData : string The data which was passed to the application on the
command line.

mOptions : map<string, string> The list of options and arguments which were

passed to the application on the command line.

Public Methods

EA_Application (argc :int, argv : char**) :
EA_Application

getProcesslD 0 :long

~EA_Application 0 :

getUserLogin 0 : RWCString&

getAppName 0 : const RWCString&

Constructor. Parses the command line, registers the

signal handlers, initializes the error log, and starts

the signal handling thread.
Returns the process id of the current executable.

Destructor. Stops the signal handling thread, and

cleans up the 1o_ file if necessary.,
Returns the user login of the user that executed the

application.
Returns the name of the executable (i.e. argv[0]).

getAppData 0 : const RWCString& Returns any data passed to the application on the
command line.

getNumOptions 0 : size_t Gets the number of options passed to the application
on the command line.

getOptionState (option : const RWCString&) : bool Returns true if the specified option was passed to the

application on the command line.

5-42

Aviation System Analysis Capability Executive Assistant Proof of Concept

Table 5-18. Properties and Methods for Application Class (Continued)

execute 0 :void

Protected Methods

I A virtual function which must be defined by thesubclass to contain the body of the application.

handleSignal (signal :int) : void A virtual function which provides basic signal han-
dling capabilities. Can be overridden by the sub-
class.

Log Class

This class provides error and debug message logging for an application. The log

messages can be written to standard output (the default) or a user-specified file.

Debug levels can be set that allow selective filtering of debug information at run-

time. A number of macros also are provided to simplify calling the "log Stream"

method. A list of properties and methods for this class can be found in Table 5-19.

Table 5-19. Properties and Methods for Log Class

Private Properties

sFileName : string

sLevel : int

sStream : ostream

The name of the log file (if any) to send messages to.

The current log level, which decides the level (i.e.

detail) of messages to send to the log.

The current output stream that log messages are sent
to.

Public Methods

setLogLevel (level :int) : void

addLogLevel (level : int = 1) : void

subLogLevel (level : int = 1) : void

isEnabled (level : int) : bool

setLogFile (IogFile : string) : void

IogStrearn (line : unsigned int, file : string, tag :
char) : ostream&

timeStamp 0 : string

Sets the current log level to the specified value.

Increments the log level by the specified value.

Decrements the log level by the specified value.

Returns whether a message of the specified level
should be logged. Returns true if the specified level is

less-than-or-equal to the current log level.
Creates and sets the log file to a file with the speci-

fied name. All subsequent log messages will be sent
to this file.

Writes the given line number, file name, and tag to

the log along with a time stamp, then returns the log

stream which can be used to output a log message.

Returns a string which contains the current date and
time.

cleanup 0 : void Performs cleanup by closing the log file if necessary. :

5 -43

CorbaClient Class

The CorbaClient class is a subclass of the Application class that handles initiali-

zation of the ORB as well as encapsulating other basic CORBA client functions,

such as object-to-string and string-to-object conversion. A list of properties and
methods for this class can be found in Table 5-20.

Table 5-20. Properties and Methods for CorbaClient Class

Protected Properties

sORB " CORBA::ORB_ptr / A reference to the ORB being used by the application.
I

Public Methods
EA_CorbaClient (argc : int, argv : char**) : Constructor.Initializes the ORB.
EA CorbaClient

toString (objRef : CORBA::Object_ptr) : Converts a CORBA object reference into a string repre-
RWCString sentation.

~EA_CorbaClient 0 : Destructor.

toObject (strObj : const char*) : Converts a string representation of anobjectreference (a
CORBA::Object_ptr "stringified" object reference) into an object reference.

getOrbService (name : const char*) : Returns a reference to the given ORB service rcgistersed
CORBA::Object_ptr with the ORB.

CorbaServer Class

The CorbaServer class handles initialization of the BOA (Basic Object Adapter)

and encapsulates the registration and activation of CORBA objects. The class also

provides a signal handler that provides a clean shutdown of the server in the event

of certain external signals or internal error signals. A list of properties and meth-
ods for this class can be found in Table 5-21.

5-44

..Aviation system Analys!s Capabili_ Executive Assistant proof of Concept

Table 5-21. Properties and Methods for CorbaServer Class

Private Properties

sBOA : CORBA::BOA_ptr A reference to the BOA (Basic Object Adaptor)
used by the server.

mCorbaObjects : list<CORBA::Object_ptr> A list of CORBA objects which the server contains

& manages.

Public Methods

EA_CorbaServer (argc : int, argv : char**) : Constructor. Initializes the BOA.
EA CorbaServer

-EA_CorbaServer 0 :

addCorbaObject (objRef : CORBA::Object_ptr) :
void

execute 0 :void

Protected Methods

Destructor. Deactivates and releases the CORBA

objects owned by the server.

Registers and activates the specified CORBA ob-

ject, and adds it to the list of CORBA objects owned

by the server.

Executes the CORBA event loop which continually

accepts incoming requests and passes them to the

proper object to be handled.

handleSignal (signal : int) : void

I Overrides the Application class signal handling to
properly shut down the CORBA server when certain

signals are received.

ANALYSIS CLIENT PACKAGE

The Analysis Client package contains the driver for the AnalsysiClient applica-

tion. The class diagram for the Analysis Client package is shown in Figure 5-19.

Figure 5-19. Analysis Client Class Diagram

EA_CorbaClient
(fromApplicationPackage)

_EA_CorbaClient()
_$toString()
_~EA_CorbaClient()
_$toObject()
4=$getOrbService()

EA Anal_,sisClient

!_mAnalysis i EA_Analysis_

%xecute()
_EA_AnalysisClient() |
_~EA_AnalysisClient() .J

>

0..1

EA_Analysis
(fromDataTransformerPackage)

_;createAnalysis()
_getTimeEstimate()
_-EA_Analysis()

_run()
_lbaddDataTransformer()
aibEA_Analysis()
dlbaddDataRelationship()
_lb$cleanupChildren()

5-45

AnalysisClient Class

The AnalysisClient class inherits from the CorbaClient class and provides the

driver for the POC client application. The "execute" method instantiates an

Analysis, runs it, and then displays the results when it has finished. A list of prop-
erties and methods for this class can be found in Table 5-22.

Table 5-22. Properties and Methods for AnaIysisClient Class

Private Properties

mAnalysis : EA Analysis The analysis which the analysis client runs.

Public Methods
execute 0 : void

EA_AnalysisClient 0: EA_AnalysisGlient

Creates an analysis based on the specification given
on the command line, prompts for any necessary
input, then runs the analysis and outputs results.
Constructor.

~EA_AnalysisClient 0 : Destructor.

I

MODEL SERVER PACKAGE

The Model Server package contains all the classes that are used to implement the

CORBA server application for the POC. The package includes the generic Inter-

face definition language (IDL) for models, the ModelWrapper_i class that imple-

ments the IDL interface, and the class that acts as the driver for the server. The

class diagram for the Model Server package is shown in Figure 5-20.

5-46

Aviation System Analysis Capability Executive Assistant Proof of Concept

Figure 5-20. Model Server Class Diagram

<<interface>>

EA::ModetWrapper

"run()

EA_ModelWrapper_i]

t$ sNum-Calls : unsigned long1
!_>rnObjectName : string
i_rnModelExec str ng

P
"EA_ModelWrapper_i()
"run()
"~EA_ModelWrapper_i()

_l_vritelnput()
I_l'parseOutput()
_PexecuteModel()

_. corba objects

creates

1

...... I

EA_CorbaServer

(from Application Package) j
"EA_CorbaServer() /"-EA CorbaServer()
"addCorbaObject()
"execute()

_'_handleSignal()
_b$shutdown()

EA_ModelServer

"EA_ModelServer()

"-EA_ModelServer()1

ModelWrapper Interface

The ModelWrapper interface is an IDL that provides a standard, generic interface

to distributed models in the ASAC EA system. The ModelWrapper interface pro-

vides a "run" method that takes a sequence of data as input and returns a sequence

of data as output.

ModelWrapper_i Class

The ModelWrapper_i class provides an implementation of the ModelWrapper

interface that wraps standalone models with simple file-oriented interfaces. The

class parses the input sequence, writes it to a file, and executes the model against

the input file. It then parses the models output file and returns the results as a se-

quence of data.

5-47

ModelServerClass

The ModelServer class inherits from the CorbaServer class and provides the

driver for the POC server application. The ModelServer class reads from a con-

figuration file specified on the command line and creates one or more Model-

Wrapper_i objects and registers and activates them as CORBA objects. Then it

runs as a server, accepting and handling requests sent to those objects, until it is
shutdown or otherwise killed.

Domain-Specific Software Architecture Substage 4-7:

Develop State Diagrams

State diagrams describe all possible states of a particular object and how the ob-

ject's state changes on particular events. The following sections contain state dia-

grams only for the classes that require states.

ANALYSIS STATE DIAGRAM

The Analysis has four states: "Waiting," "Running," "Done," and "Error." On

creation of the Analysis, it creates an AnalysisSpecification, receives input and

output DataElementSets from the AnalysisSpecification, and registers as an ob-

server to its input DataElementSet. At the same time, the initial state of the Analy-

sis is set to the "Waiting" state. When the Analysis is notified of a state change on

its input DataElementSet, the Analysis finds out what the state is. If the input Da-

taElementSet is in the "Set" state, the Analysis will change to the "Running" state

and notify its observers. In the "Running" state, it will create the Models and Da-

taRelationships needed for the Analysis and will wait for its output DataElement-

Set to become "Set." Once the output DataElementSet of the Analysis is "Set," it

will go to the "Done" state where it will remain until either the Analysis input

DataElementSet becomes "Unset" (at which time the Analysis will go to the "Not

Ready To Run" state), or it is destroyed. Upon a system error, the Analysis will go

to the "Error" state. Figure 5-21 shows the Analysis state diagram.

5-48

Figure 5-21. Analysis State Diagram

Create Analysis
l

Normal Operation

entry: Create Analysis Spec

entry: Init mlnput & mOutput

entry: Create Models

entry: Create Relationships

entry: Observe input DES

notifyChange ._ Running 'Waiting [mlnput.getState == READY] "_ entryi Notify Observers-
Ido:Wait

\

[mOutput.getState == READY 1
J

..... _2 j

entry: DoneNotify Observers

Error Detected Destroy

__v
e Error 1

ntry: Notify Observers _ _.(_O_ I Analysis Destruction

do:Handle

MODEL STATE DIAGRAM

The Model class has four states: "Waiting," "Running," "Done," and "Error." On

creation of the Model, it creates a ModelSpecification, receives input and output

DataElementSets from the ModelSpecification, and registers as an observer to the

input DataElementSet. At the same time, the initial state of the Model is the

"Waiting" state. When the Model's input DataElementSet goes to the "Set" state,

the Model will change state to the "Running" state and notify its observers. In the

"Running" state, the Model will perform it's transformation and will wait for its

output DataElementSet to become "Set." Once the Model output DataElementSet

is "Set," it will go to the "Done" state and will remain there until either the Model

input DataElementSet becomes "Unset" (at which time the Model will go to the

"Waiting" state), or it is destroyed. Upon a system error, the Model will go into

the "Error" state. Figure 5-22 shows the Model state diagram.

5-49

Figure 5-22. Model State Diagram

Create Model

Normal Operation

entry: Create Model Spec

entry: Init mlnput & mOutput
entry: Observe input DES

_.___/_ notifyChange

l" Waiting
. _ [mlnput.getState == READE] 1_

j/

[mOutput.getSmte == READY]

entry: Notify Observers I

Running 1
entry: Notify Observers

do: Run Model

Evaluate Output DES State
J

Error Detected

Error /

entry: Notify Observers t
do: Handle Error

r

\
'\

Destroy
\

_ Model Destruction

DATARELATIONSHIP STATE DIAGRAM

The DataRelationship class has four states: "Waiting," "Running," "Done," and

"Error." On creation of the DataRelationship, it creates the DataRelationship

Specification. The DataRelationship then receives input and output DataElement-

Sets from the DataRelationship Specification and registers as an observer to the

input DataElementSet. At the same time, the initial state of the DataRelationship

is the "Waiting" state. When its input DataElementSet goes to the "Set" state, the

DataRelationship will change state to the "Running" state and notify its observers.

In the "Running" state, the DataRelationship will perform its transformation and

will wait for its output DataElementSet to become "Set." Once the DataRelation-

ship output DataElementSet is "Set," it will go to the "Done" state and will re-

main there until either the DataRelationship input DataElementSet becomes

"Unset" (at which time the Model will go to the "Waiting" state), or it is de-

stroyed. Figure 5-23 shows the DataRelationship state diagram.

5-50

Aviation System Analysis Capability Executive Assistant Proof of Concept

Figure 5-23. DataRelationship State Diagram

Create Relationship

Normal Operation

entry: Observe input DES

.1.
_ ________ notifyChange _

![mlnput.getState == READY]_,__ RunningWaiting = do: Perform Relationship

_, J exit: Evaluate Output DES State J

f_J

Done

F

I'
Error Detected

Error

do: Handle Error

\\\

Destroy
"\

'\\

_O Relationship Destruction

DATAELEMENTSET STATE DIAGRAM

The DataElementSet class has three states: "Waiting", "Ready," and "Error." On

creation of the DataElementSet, its initial state will be the "Waiting" state. The

DataElementSet will go to the "Ready" state when it evaluates its state and finds

all of its DataElements are in the "Ready" state. Upon a system error, DataEle-

mentSet will go into the "Error" state. Figure.5-24 shows the DataElementSet

state diagram.

5-51

Figure 5-24. DataElementSet State Diagram

Create DES
I

Normal Operation

entry: Initialize DataElements

iF _ Ready /

ientry: Waiting t evaluateState[All Elements Ready]__
Notify Observers_ evaluateState[All Elements Not Ready] -ientry: Notify Observers /

Error Detected

I Error i
entry: Notify Observers !

_ do: Handle Error_

\\

Destroy
\,

DES Destruction

DATAELEMENT STATE DIAGRAM

The DataElement class has three states: "Waiting", "Ready" and "Error." On

creation of the Data_Element, its initial state will be the "Waiting" state. The Da-

taElementSet will go to the "Ready" state when its state is changed to "Ready" by

the SetState0 command. It will change to the "Waiting" state when the SetState0

command sets it to "Waiting." Upon a system error, DataElement will go into the

"Error" state. Figure 5-25 shows the DataElement state diagram.

5-52

Aviation System Analysis Capability Executive Assistant Proof of Concept

Figure 5-25. DataElement State Diagram

Create Element

Normal Operation

entry: Initialize Value

Waiting _t setState(state)[state == READY] ._,(

"_ __ setState(state)[state == WAITING]- t

Ready ,

I

Error Detected Destroy

IF Error _l _ Element Destruction

do: Handle Err?r / _'_J

DSSA Substage 4-8: Develop Deployment Diagrams

A deployment diagram shows processors, devices, and their connections. A proc-

essor is a hardware component capable of executing programs, i.e., a computer. A

device is a hardware component with no computing power, i.e., hardware con-

troller or modem. There are no devices in the ASAC EA system, so the POC

Deployment Diagram contains only processors and their connections with each

other. The Deployment Diagram is shown in Figure 5-26. It is a genetic model

showing that there will be an AnalysisClient, riker, with an osagent on it as well

as multiple ModelServers, spock and worf, that will have Model Applications

running on them.

5-53

Figure 5-26. POC Deployment Diagram

fl
jf

TCP/IP, IIOP

riker _j j_J_

AnalysisClient
osagent

ModelServer

ModelServer

DSSA Substage 4-9: Review and Iterate

Review and iterate the items developed in DSSA stage 4.

DSSA STAGE 5--IDENTIFY REUSABLE ARTIFACTS

The goal for this phase of the domain-engineering process is to populate the soft-

ware architecture high-level design(s) with components that may be used to gen-

erate new applications in the domain.

The following substages of DSSA stage 5 were completed during the ASAC de-

velopment effort:

• 5-1 Develop and collect the reusable artifacts

• 5-2 Develop each module

• 5-3 Requirements, verification, and testing

• 5-4 Review and iterate.

DSSA Substage 5-1: Develop and Collect the Reusable Artifacts

This substage addresses how to determine the best source of components to

populate the software architecture. It is often referred to as the make, buy, or

modify decision.

5-54

Aviation System Analysis Capability Executive Assistant Proof of Concept

ASAC SERVICES

Message broker and binding languages evaluated and selections during the design

effort and documented in the Aviation System Analysis Capability Executive As-

sistant Design. During development, we evaluated the need for an object-oriented

database management system, that uses the same techniques described in the de-

sign document.

The ASAC EA system needs to store and retrieve data related to the execution of

models. A data management service was identified in the system architecture to

provide this functionality. A number of options were available for providing the

service, but to provide a robust and scaleable solution, we decided to use a com-

mercial database management system.

Many types of database management systems exist. Four main categories of sys-

tems are relational, object-oriented, object-relational, and hierarchical. The last

two categories of databases are primarily used in specialized applications that do

not match the domain of the ASAC system. Therefore, the first two categories

were investigated to provide the data management service.

Relational databases, e.g., Sybase and Oracle, are the most commonly used data-

bases, and are widely used in business applications. In these databases, data are

stored in tables consisting of rows and columns of data; much like a simple Excel

spreadsheet. Despite their name, relational databases can become quite complex

and unwieldy when complex relationships between tables exist. Another problem

with relational databases is that their model does not match the object-oriented

paradigm, requiring writing additional layers of code to handle mappings between

objects and the relational database. The extra layer of code can be quite complex

and require a great deal of debugging.

Object-oriented databases are relatively new, but have quickly gained acceptance

in certain domains as the products have matured. Unlike relational databases, ob-

ject-oriented databases store objects and their relationships directly, making stor-

ing data and translating between objects in the code and the database almost

seamless. In applications that are highly object-oriented and involve complex re-

lationships, like the ASAC EA, an object-oriented database can save a great deal

of time in developing and maintaining the system. In addition, an object-oriented

database can be orders of magnitude faster in these types of applications because

they store relationships directly, thereby avoiding the need to perform complex

relational joins. For these reasons, we decided that an object-oriented database

would be the best choice for the data management service.

5-55

A numberof object-orienteddatabasemanagementsystems(OODBMS)were
initially investigated.Theyincluded

• GemStone

• 02 (ArdentSoftware)

• Objectivity

• ObjectStore(ObjectDesign)

• POET

• Versant.

Onthebasisof our initial researchandgeneralselectioncriteria,suchastheplat-
formsandlanguagessupported,threedatabaseswereselectedfor morethorough
evaluation.Theyare

• 02 (ArdentSoftware)

• ObjectStore(ObjectDesign)

• Versant.

We formulatedevaluationcriteriaandquestionsto useasguidelinesandareasof
investigationduringthedetailedevaluationphase.Unlike relationaldatabases,
OODBMSsdiffer from oneanothersignificantly.Choosingthebestonedepends
greatlyon thespecificapplicationandrequirements.To assessthedifferences,we
contactedandquestionedtechnicalrepresentativesof thethreevendors.Also,
eachrepresentativesuppliedevaluationcopiesof theirOODBMS.

We testedtheevaluationsoftwareto determine,ataminimum

• Easeof installation

• Easeof administration

• Basicfunctionality(usingincludeddemonstration programs)

• Ease of porting existing ASAC EA code.

We chose Versant because it was the only database that performed acceptably in

all the evaluation areas. 02 did not enable us to easily port existing ASAC EA

code and did not include a suitable persistent collection class library. ObjectStore

proved difficult to install and administer and was a clumsier overall interface than

the other two products.

5-56

Aviation System Analysis Capability Executive Assistant Proof of Concept

DSSA Substage 5-2: Develop Each Module

DEVELOPMENT ENVIRONMENT

The environment used for developing the ASAC EA POC consisted of desktop

and server machines, as well as a number of tools and libraries which are de-

scribed below. A diagram of how the machines, tools, and libraries were config-

ured is in Figure 5-27.

• Machines

HP 9000/803 Server running HP-UX (unix) version 10.20

The HP server machine was used for developing and testing all the

C++ code for the POC.

Compaq Desktop PCs running Windows 95

Desktops PCs were used for initial prototyping of the design in the

Java language and for reverse engineering the design when the POC

was completed. The PCs also served as an interface to the server ma-

chine where the actual development took place.

• Tools and Libraries

HP C++ Compiler (aC++)

The HP C++ compiler was used to compile and debug the C++ code

developed for the POC.

VisiBroker for C++

VisiBroker for C++ is the CORBA Object Request Broker used to

build and deploy the POC in a distributed environment across multiple

platforms.

Revision Control System

Revision Control System (RCS) is a "revision control" or "version

control" system the was used to baseline the code at the end of the

POC development phase. All development done during the next phase

of development will use that code as a baseline and RCS will be used

to track and manage any changes made to the code.

make

Build scripts were written on the server using a utility called make.

The scripts provide automated builds (compilation) of the developed

source code.

5-57

RationalRosefor C++
RationalRose was used during development to view the existing de-

sign. It also was used after development to reverse-engineer and update

the design based on the developed code.

RogueWave Tools.h++ library

The RogueWave Tools library provides a number of utility and con-

tainer classes that were used in the development of the C++ code for
the POC.

Parasoft CodeWizard

CodeWizard finds programming and design problems in C++ or Java

source code automatically.

Java JDK 1.1.5

The Java Development Kit from Sun was used for developing a quick

prototype of the POC before beginning development in C++.

Perl 5.004

The Practical Extraction and Report Language (perl) is a concise gen-

eral-purpose language often used for scanning text and printing for-

matted reports. Its Common Gateway Interface (CGI) and libraries

make it well suited for forms processing and on-the-fly page creation.

Perl also contains object-oriented features.

Figure 5-27. ASAC EA Proof of Concept Development Environment

DgsktopPC
RationalRose

JavaJDK

DesktopPC
RationalRose

HP-UX Server

C++ Compiler
VisiBrokerfor C++

RCS
make

RogueWave Library
CodeWizard

Perl

DEVELOPMENT PROCESS

The development started with the design that was completed during the previous

phase of the project and documented in the Aviation System Analysis Capability

Executive Assistant Design. The development steps were

• Prototyping

5-58

...Aviation System Analysis CaPabilitY Executive Assistan t Proof of Concept

• Requirements Definition

• Coding and Unit Testing

• Integration

• System Testing

• Documentation.

A prototype was developed initially for verifying key aspects of the design and for

discovering implementation issues early in the development. The prototype was

developed in the Java language on desktop PCs. Java was chosen because it al-

lows rapid development, has a CORBA binding, has built-in support for threads,

and maps very well to C++. Also when the prototype was being developed, the

IDL interface for the CORBA ModelServer was designed and tested.

Requirements then were defined in detail based on information from the archi-

tecture and design documents. Nine categories of requirements were developed

which contain a total of sixty-two detailed requirements.

After the prototype was finished and requirements were carefully defined, the full

system was coded in C++. Classes were coded according to the design and the

C+ + Coding Standards chosen for the project. When necessary, test drivers were

written to test individual classes or a group of classes. Additional classes were de-

signed and implemented as required for encapsulating certain functionality, e.g.,

threads and error logging. As issues arose during the development, solutions were

prototyped or tested as necessary and then implemented. As classes were finished,

they were put under configuration management using RCS.

When the core functionality of the classes had been completed, the classes were

integrated into the two pieces of the POC: the AnalysisClient and the ModelServer.

Each was integrated as early as possible to avoid redesign and rework caused by

undiscovered problems propagating to the end of the development phase. As

additional functionality was developed, it was integrated into the system.

System-level test procedures were developed based on the basis of the functional

requirements of the system. Once developed, the system was run against the test

cases and the results verified. Deficiencies were logged as a problem report and

tracked until the problem was corrected and re-verified.

Once the POC was completely developed, its complete design was captured to use

as input for the design and development of the beta system. One possible method

to capture the design was to modify the existing design, making changes and

adding additional classes as necessary. However, Rational Rose, the design tool

used, provided a slightly more elegant solution. The finished code was analyzed

by Rational Rose, and the class model was reverse-engineered from the actual

5-59

code. This process is not perfect and the resulting model had to be modified, but

much less than would have been required for the existing model.

BANK PROTOTYPE

A banking demonstration or example program that shipped with the Visigenic

ORB was used as the basis for a quick prototype to test some of the concepts re-

lating to the ASAC EA client-server communication. Three main areas were tested

1. Communications over CORBA between a Java client and a C++ server

2. Asynchronous callbacks from the server to the client

3. Execution of the Java client as an applet running in a browser.

Versions of the Visigenic program were available in both Java and C++, which

enabled us to easily test the fn'st area, communication between a Java client and a
C++ server.

The second area was tested by modifying interfaces between the client and server

to allow the server to call CORBA objects on the client, which in turn updated the

client. This area was tested without problems.

The third area was tested by modifying the client to run as an applet in a browser.

Although this area is more trivial than the first two areas, it was the most prob-

lematic because of inaccurate and insufficient documentation in the Visigenic

manuals. Solutions to the problems were discovered only by searching various

CORBA-related Internet newsgroups. Once the problems were remedied, the area

was successfully completed.

In addition to testing the three areas, the prototype helped to validate aspects of

the system design and provided useful information for the implementation and

deployment phases of the project.

DSSA Substage 5-3: Requirements, Verification, and Testing

ASAC EA POC REQUIREMENTS

Fifteen requirements were applicable to the ASAC EA POC. They are:

_I, AE0001 The Analyst shall have the capability to execute an analysis if an

off-line administrator has granted the appropriate permissions.

AE0003 When an analysis is executed, the names of the models that are

executed, as part of that analysis, will be logged to a log file.

AE0004 When an analysis is executed, its inputs and outputs will be

logged.

5-60

..Aviati°n SYStem Ana!ys!s CapabiIity Executive Assistant Proof of ConcePt

• AE0005 When a model is executed, its inputs and outputs will be logged.

• AE0006 Upon completion of the execution of an analysis, the results will

be presented to the user if the user is logged into the system.

• AE0008 ASAC will provide a message to the user indicating a rough esti-

mated time required to execute an analysis. Note: This will be a very rough

estimate, as there are currently no plans to perform an interrogation of net-

work and system(s) loading at the time of execution to provide a better es-

timate, not to mention the affect of data set size on model execution time.

• AM0001 The capability shall be provided to create an analysis by using

off-line tools.

• AM0003 The capability shall be provided to update an analysis by using

off-line tools.

• AS0001 An analysis may contain one or more models or analyses.

• AS0002 Analyses may have default input values.

• DC0001 ASAC will accommodate operation of its models at remote sites.

• DC0003 ASAC EA shall support the concurrent execution of more than

one instance of the same analysis on the same or different machines.

• DC0004 ASAC EA shall support the concurrent execution of more than

one instance of the same model on the same or different machines.

• DC0005 The physical location of the models shall be transparent to the

ASAC EA.

• EH0003 The user shall be notified if a model server is not available.

These fifteen requirements were validated as part of the ASAC EA POC accep-

tance.

POE IMPLEMENTATION

Figure 5-28 shows the POC implementation. The POC analysis contains four

models, Traffic, Cost, Revenue and Profit; six data relationships; and five user

inputs. We chose this configuration because it exercises many of the characteris-

tics of an analysis (i.e., single and multiple data relationships between models,

single models feeding multiple models, and multiple models feeding single

models).

5-61

7_

!

!
!

I
!

i Input

!

i

!
i

i

Figure 5-28. Proof of Concept Implementation

Revenue Passenger Miles Cost

Number of Traffic Model

Passengers

Revenue Passenger Miles
Revenue

Available Seat Miles =

Profit Model - Profit Output

Model inputs, outputs, and calculations are described in Table 5-23 below.

Table 5-23. Proof of Concept Model Descriptions

Model

Traffic

Cost

Revenue

Profit

Inputs

Stage Length

Number of Passengers

Fixed Cost

Load Factor

Yield

Revenue Passenger Miles

Cost

Revenue

Outputs

Revenue Passenger Miles

Available Seat Miles

Cost

Revenue

Profit

Calculations

Revenue Passenger Miies=

(Passengers) x (Stage Length)

Available Seat Miles = (Reve'-

nue Passenger Miles) - (Load
Factor)

Cost = (Fixed Cost) + (Avail-

able Seat Miles) x (0.1)

Revenue = (Revenue Passenger

Miles) x (Yield)

Profit = (Revenue) - (Cost)

To complete the analysis, the ASAC EA Poe performed the following:

• Built the analysis and gave it an input.

• Constructed the models and data relationships between the models and

analysis.

5-62

Aviation System Analysis Capability Executive Assistant Proof of Concept

• The models transformed their input data into output data.

• When all transformations were finished, and the analysis was complete,

stored the final output.

The models used for the analysis were distributed. The analysis communicated

with the distributed models using Visigenic's implementation of the OMG

CORBA standard that makes the distributed nature of the models virtually trans-

parent. The actual models were wrapped by a standard interface, defined by using

OMG IDL that allowed the models to be distributed and provided clients with a

standard method for invoking all models. Models for the analysis were developed

using perl, with an interface similar to the interface of the current ASAC models.

Each model was wrapped to enable distributed communication. The analysis ap-

plication and the model wrappers were developed on the HP-UX platform by

using the C++ programming language. The input and output data structures and

default values for each model were specified by a prototype system catalog.

ASAC EA POC TESTING

Six procedures were developed to test the fifteen ASAC EA POC requirements.

Procedures TP-AE-1 and TP-AE-2 test the Analysis Execution requirements,

TP-AM-1 the Analysis Management requirements, TP-AS-1 the Analysis Specifi-

cation requirements, TP-DC-1 the Distributed Computing requirements, and

TP-EH-3 the Error Handling requirement. Table 5-24 maps ASAC EA POC

requirements to the appropriate test procedure and lists the implementation classes

used to test a requirement.

Table 5-24. ASAC EA Proof of Concept Requirements and Test Procedures

Requirement

AE0001

AE0003

AE0004

Test Procedure

TP-AE-1

TP-AE-2

TP-AE-2

Implementation Classes

EA_AnalysisClient

EA_Log, EA_Analysis

EA_Log, EA_Analysis

AE0005 TP-AE-2 EA_Log, EA ModelProxy

AE0006 TP-AE-1 EA_AnalysisClient, EA_DataElementSet

AE0008 TP-AE-1 EA_AnalysisClient, EA_AnalysisSpec

AM0001 TP-AM-1 EA_Specification, EA_DataStorage

AM0003 TP-AM-1 EA_Specification, EA_DataStorage

AS0001 TP-AS-1 EA_Analysis, EA AnalysisSpec

AS0002 TP-AS-1 EA_AnalysisSpec, EA_DataElementSet,

EA_DataElement

DC0001 TP-DC-1 EA_ModelProxy, EA_ModelWrapper_i,
EA_ModelServer, CORBA

5-63

Table 5-24. ASAC EA Proof of Concept Requirements and Test Procedures

(Continued)

Requirement Test Procedure Implementation Classes

DC0003 TP-DC-1 EA_ModelProxy, EA_ModelWrapper_i,

EA_AnalysisClient, CORBA

DC0004 TP-DC-1 EA_ModelProxy, EA_ModelWrapper_i,
EA_ModelServer, CORBA

DC0005 TP-DC-1 EA_ModelProxy, EA_ModelSpec, CORBA

EH0003 TP-EH-3 EA_ModelProxy

The ASAC EA POC test procedures were successfully completed on 23 February

1998. One minor problem report was issued during the testing. The problem was

resolved and rechecked before the test was completed. A summary of the test re-

suits is in Table 5-25. The as-run test procedures are in Appendix A.

Table 5-25. Summary of the ASAC EA Proof of Concept Test Results

Test # Date Tested by Witnessed by Results

TP-AE-1 February 23, 1998 Kevin Anderson Eileen Roberts Passed

TP-AE-2 February 23, 1998 Kevin Anderson Eileen Roberts Passed

TP-AM-1 February23, 1998 Kevin Anderson Eileen Roberts PR #1 Issued,
Passed

TP-DC-1 February 23, 1998 Kevin Anderson Eileen Roberts Passed

TP-AS-1 February 23, 1998 Kevin Anderson Eileen Roberts Passed

TP-EH-3 February 23, 1998 Kevin Anderson Eileen Roberts Passed

ASAC EA POC DEMONSTRATION

After the ASAC EA POC was tested successfully, it was demonstrated to NASA.

Four scenarios were demonstrated

Single Analysis

Multiple Analysis

Load Balancing

Fault Tolerance.

In Figures 5-29 through 5-32, each box represents a server. The underlined name

in each box is the name of the server, the boxes on the left are analysis servers and

the boxes on the fight are model servers. The lines indicate communication paths,

and an X through a box indicated that it was shut down during execution.

5-64

Single-AnalysisScenario

Thesingle-analysisscenario,depictedin Figure5-29,demonstratedthefollowing:

• Fourmodelsrunningon four separatemachines.

• WhenthePOCanalysiswasrun,eachmodelwascalledat theappropriate
time.

• Twomodels,costandrevenue,wererun simultaneously.

Figure 5-29. Single-Analysis Scenario

Riker

AnalysisClient
Visigenic Agent

Riker

Traffic Model

Worf
Cost Model

S_pock
Revenue Model

Uhura
Profit Model

5 -65

Multiple-AnalysisScenario

Themultiple-analysisscenario,depictedin Figure5-30,demonstratedthefol-
lowing:

t Two instancesof thePOCanalysisransimultaneously.

Eachanalysiscalledeachmodelserversimultaneously.

Eachmodelserverran two copiesof therequestedmodel.

Figure 5-30. Multiple-Analysis Scenario

Riker

AnalysisClient

Riker

AnalysisClient
Visigenic Agent

Riker
Traffic Model

Worf
Cost Model

S_pock
Revenue Model

Uhura
Profit Model

Load-Balancing Scenario

The load-balancing scenario, depicted in Figure 5-31, demonstrated the following:

Two different models were run on each server.

Two instances of the POC analysis were run simultaneously.

5-66

..Aviation systemAnalysiscapabi!!ty Executive Assistant Proof of Concep t

Each analysis chose a different instance of each model.

Figure 5-31. Load-Balancing Scenario

Riker

AnalysisClient

Riker

AnalysisClient
Visigenic Agent

Riker
Traffic Model
Profit Model

Worf
Cost Model

Traffic Model

Spock
Revenue Model

Cost Model

Uhura
Profit Model

Revenue Model

Fault-Tolerance Scenario

The fault-tolerance scenario, depicted in Figure 5-32, demonstrated the following:

Two instances of the POC analysis ran simultaneously.

During execution, one of the model servers was shutdown.

The analyses recovered and continued execution.

5 -67

Figure 5-32. Fault-Tolerance Scenario

Riker

AnalysisClient

Riker

AnalysisClient
Visigenic Agent

Riker
Traffic Model
Profit Model

Worf
Cost Model

Traffic Model

Uhura
Profit Model

Revenue Model

POC USER GUI EVALUATION

In addition to the ASAC EA POC, a mockup Java GUI client was developed as a

prototype for the end-user interface to the EA system. The mock-up was devel-

oped to gather early user feedback on the general look feel, and navigational

metaphors, and for demonstrating to NASA along with the ASAC EA POC.

The GUI created for the ASAC EA POC was a nonfunctional prototype and was a

standalone (not connected to the server).

RESULTS OF THE POC

The ASAC EA POC test procedures were successfully completed on February 23,

1998. The ASAC EA POC and GUI were demonstrated to and accepted by NASA
in March 1998. The ASAC EA POC

5-68

Aviation System Analysis Capability Executive Assistant Proof of Concept

• Successfully integrated distributed models in various configurations

• Demonstrated validity of system design

• Demonstrated single and multiple analyses

• Demonstrated load balancing and fault tolerance

• Works like final system will work

• Produced reusable products that will be used in the final system.

DSSA Substage 5-4: Review and Iterate

Review and iterate the items developed in DSSA stage 5.

5-69

Chapter 6

ASAC EA Beta Version

As mentioned in Chapter 5, this chapter discusses each of the applicable areas of

DSSA stages 4 and 5 of the ASAC EA Beta version.

The ASAC EA Beta version expands on the ASAC EA POC. As described in

Chapter 5, the Beta version will meet all of the ASAC EA system requirements

except optimization and security. Figure 6-1 shows the context diagram of the
ASAC EA Beta version.

The analyses that are available in the ASAC Executive Assistant (First Genera-

tion), at http://www.asac.lmi.org/eawelcome.html, will be incorporated into the

ASAC EA Beta version. The analyses are

Aircraft Technology

Air Traffic Management.

The ASAC EA Beta version will be demonstrated to NASA in November 1998.

Figure 6-1. Beta Version Context Diagram

i] i
! -- i

1 ,.,.io.._ !7 o!,. • M....

,rAnlllysls History =.1. Y Tiimpllttes

/ APPLICATION _-Documentl, Hiltory _ ...L _ -t _.

L _ 0........ _-T_
.... // /
OEP.OENCY_" / i !
REPOSITORY j I

CATALOG

REPOSITORY _ APPLICATION _

' Executive Aeeietant

... ,

Templtto_]

I
I

i TEMPLATE
DEVELOPER

6-1

BETA VERSION GOALS

The ASAC EA POC was developed to address the high risk areas of the ASAC

EA system. The goals for the ASAC EA Beta version were to expand on the

ASAC EA POC by

• developing the client (user) application,

• expanding the analysis and model applications,

• integrating the client and analysis applications, and

• creating and fielding a pre-release version of the ASAC EA for initial

testing.

REVIEW AND ITERATE DSSA SUBSTAGE 2-8: DEFINE

ASSUMPTIONS

The assumptions defined in the design phase of the project and described in the

Aviation System Analysis Capability Executive Assistant Design still apply. In ad-

dition, the following assumptions were made while implementing the Beta ver-
sion:

ASAC EA Clients must be capable of running a Java virtual machine, ver-

sion 1.1.6 or greater, and must be able to connect to the AnalysisServer

over the Intemet by using CORBA protocols as implemented by Inprise's

(previously Borland/Visigenic) VisiBroker ORB.

REVIEW AND ITERATE DSSA SUBSTAGE 2-9: DEFINE

ISSUES

Issues remaining from POC are as follows:

• What are the space constraints on user systems (maximum size for the user

application)? What is tile target size of the analysis application?

The analysis client is designed to run on a Pentium-class machine with

32 megabytes (MBs) of random access memory (RAM) or greater. Size of

the application, including the Java virtual machine, should not exceed

20 MB of disk space.

Do we use a database or some other mechanism (fiat files) for storing

analysis and model specifications? If we use a database, is it relational,

OO, or a hybrid?

6-2

An object-orienteddatabasewill beusedto storeanalysisandmodelspeci-
ficationsaswell asotherdatausedby thesystem.

• Whenamodelfails becauseof anerror,how is its parentanalysisnotified?
(How dowehandleerrorsin amultithreadedenvironment?)

UsetheSubject/Observerparadigmandobservewhenthemodelchanges
its stateto error.Alsopropagatethischangeto theclient byusinga
distributedcallbackmechanismverysimilar to theSubject/Observerpara-
digm.

New issueswereidentifiedwhiledevelopingtheASAC EA Betaversion.They
were:

• How doesASAC handleinputsor outputsthatdonotmatchits current
two-dimensionalformatfor dataelements?

Datathatis greaterthantwo-dimensions,or hasavariablenumberof di-
mensions,doesnot fit well into thecurrentdatastructuredefinedby the
ASACPOC.Thestructurecould beexpandedto handlemorethantwo
dimensions,but this wouldmakeeditingandviewing thedatadifficult to
theuser.Instead,for theBeta,we addedthefacility to link dataelements
togetherin waysthatcanmimic n-dimensionaldatastructures.This is a
fairly easyadditionto implement,andit alsokeepstheinterfacesimplefor
theusersincetheyonly dealwith two dimensionsat atime.

How doesASAChandlebinary(i.e.,graphics)andothertypesof datathat
modelsmayreturnasoutputbeyondthecurrentlyspecifiedtypesof data?

Thiswill be investigatedfurtherafterthebeta,but thecurrentthinking is
to expandtheCORBAinterfacedefinitionby usingunionsthatcouldbe
usedto specifyadditionaltypesof dataelements,suchasbinarydata.

DSSA STAGE 4reDEVELOP AND REFINE BETA

VERSION ANALYSIS AND MODEL APPLICATION

DOMAIN MODELS

In addition to the POC domain models created for the analysis and model applica-

tions, an entire part of the ASAC EA system, the user application, or GUI

client is new to the ASAC EA Beta version. The user application has its own set

of domain models. For easy comparison and viewing, the complete set of analysis

and model application domain models are followed by the complete set of user

application domain models.

6-3

Analysis and Model Application domain models that were developed for the POC

and documented in Chapter 5 were refined during Beta version development. The
domain models that were refined are:

• 4-3 Use case diagrams

4-4 Interaction diagrams

Sequence diagrams

4-5 Package diagrams

4-6 Class diagrams

4-7 State diagrams

4-8 Deployment diagrams.

New classes were added while implementing the Beta version to support new

features, such as breakpoints, and integrate the GU/client and the server. The new
classes are:

• Breakpoint

• AnalysisServer

• AnalysisServer_i

AnalysisObserver

• ConversionUtils.

More detail about these classes will be in the discussion of the DSSA Substages in

this chapter.

DSSA Substage 4-3" Develop Use Case Diagrams

No changes were made to the use case diagrams for the ASAC EA Beta version.

DSSA Substage 4-4: Develop Interaction Diagrams

No fundamental changes were made to the relationships between objects, so no

changes to the existing interaction diagrams were necessary for the ASAC EA

Beta version. One new set of interaction diagrams (performing a DataRelation-

ship) was added to show the interaction between the Breakpoint and DataRela-

tionship classes.

6-4

A viation System Analysis Capability Executive Assistant Beta Version

PERFORMING A DATARELATIONSHIP

Figure 6-2. Performing a DataRelationship Sequence Diagram

I Inout Data : EA ! Data Relationshig I _ Qutm_ Data : EA J_ataElementS0t i J DataElementSet

If___ notifyCl_ange - I ireiati°nship]

/ ;_' run()

liabr_;,kpo_nt'::_'1
set, pause the i

lationship. J

isPreConv ()

[if preConv]

break ()

performRelationship (

[if postConv}

break ()

%
evaluataStata ()

Figure 6-3. Performing a DataRelationship Collaboration Diagram

I Input Data : EA DataElemenlISet

2: run ()

5: performRelationshJp ()

--::>

1: notifyChange

/

6: break () /"

4: break () /'

3: isPreConv () ,/ /,

Brea.lq_oint : EA Bre_k_int !

L I

Data Relationshio EA DataRelationship

\

7: evaluateState ()

\

\,

i Output Data : EA DataElementSet

6-5

DSSA Substage 4-5" Develop Package Diagrams

Package diagrams are used for readability purposes only. When a design becomes

large, it is convenient to separate groups of classes into separate packages. The

Beta server design has been divided into nine class packages:

• Subject Observer

• Specification

• Data Transformer

• Data Element

• Threads

• Utility

• Appficafion

• Analysis Server

• Model Server.

Figure 6-4 shows the Beta server package diagram. The diagram is almost identi-

cal to the POC package diagram except that the Analysis Client package is now

the Analysis Server package. The GUI client has taken the place of the Analysis

Client package. The new Analysis Server package handles the creation and exe-

cution of analyses, as well as the communication with the GUI client. The de-

pendencies among the classes are denoted by the dashed lines. The dependencies

are the following:

• The DataTransformer package depends on the Specification package to

read in Analysis and Model specifications.

• The DataTransformer package depends on the DataElement package to

hold the inputs and outputs for data transformers.

The DataTransformer and Data Element packages depend on the Subject

Observer package to handle notify DataTransformers, DataRelationships,

and DataElement Sets of state changes in other objects that they depend on.

The DataTransformer and Data Element packages depend on the Threads

package to execute models in parallel and to provide synchronization be-

tween threads and mutually exclusive access to shared data.

6-6

..Aviat!on System Analysis Capabi!!_ Executive Assis tant Beta Versio n

The DataTransformer package depends on the Utility package to provide

miscellaneous utility functions.

The Application package depends on the Threads package to implement a

thread-safe asynchronous-signal-handling thread.

The Analysis Server and Model Server packages depend on the Applica-

tion package to handle basic application functions, such as signal handles,

error logging, command-line parsing, as well as functions such as initiali-

zation and object registration, specific to CORBA clients and servers.

The Analysis Server package depends on the DataTransformer package to

coordinate the execution of analyses consisting of multiple potentially dis-
tributed models.

Figure 6-4. Beta Version Package Diagram

U_til_Package

Subject Obsewer

Package

A b

_ Specification

Package

D_-ata TransformeP

l Package _.

Element

ckage

"7

._ds Package

" A

lication

c_age

An_alvsisServerI

Package Package

DSSA Substage 4-6: Develop Class Diagrams

New classes were developed, and existing classes were modified while developing

the ASAC Beta to support new functions. The class diagrams for the new or

modified classes will be shown in accordance with their package. Classes that

have not changed significantly from the POC documented in Chapter 5 will not be

documented here.

6-7

DATA TRANSFORMER PACKAGE

The DataTransformer package contains the classes that are used for executing an

analysis. The Subject, Observer, DataElementSet (DES), and Thread classes are

shown on the class diagram to illustrate theft relationships with the classes in this

package. They are not a part of the DataTransformer package. All DataTransform-

ers inherit from the Subject and Observer classes and contain two DataElement-

Sets; one acts as its input, and the other its output. An Analysis is a special kind of

DataTransformer, which contains other DataTransformers (Models & Analyses)

and DataRelationships. DataRelationships act as links within an analysis that pass

data from one DataTransformer to the next. The class diagram for the DataTrans-

former package is shown in Figure 6-5.

The major changes in the Data Transformer package from the POC are the addi-

tions to the DataTransformer and DataRelationship classes to support breakpoints

and the integration of the GUI client and the Breakpoint class to support break-

points. The three classes are described in this section.

6-8

A viation System Analysis Capability Executive Assistant Beta Version

Figure 6-5. DataTransformer Class Diagram

EA Subject f
(horn Sublect Ob=erver P=ckage)_
_'EA Subject() J
e-EA _ -"

_,_m,or=w,,,q_) i
_etState(

A_.=_/Obmbrwm() !

T

I

.... _- r

Data E_ment p=ck=ge)

i "_EA DeltaElernentSiet() /

_et O,lltaElernent() r
_I~EA DltaElementSet() J 1

! _Bde_eteOl=Element[) L

=etDataEklment() "

getNumElemen()]

<<interfl_>> l
_om Subk_e_ Ob=erver Package]

LEA Oi_ef'ver[) r

l I

EA Dak_Tr=mldOm_r

mplrarl! : EA DltlTramlfocma"

•Jl_,mln_t : EA D_lElementSet
_mOu_ut ; EA DmE_ermantSef

"_ID : RWCSInng
• ¢mLabel : RWCSt_ng
XPo, mYPo_ : =_ort

_EA D_taTnm=fom_r()
-EA DataTmnlforrner)

*_o;_Chtnge()
"_atlnp_t()

D()

_etx_i'_on()

_tYPo_d_on()
_po_ltion_)
CmaetStit_)

EA [_ltlRl_onlh_p

_rnlnput : EA D_ElernentSet"
• _,nOut_t : EA DamE_rne_Set*
• _lBrel_nt : EA Bmakp_nt*

DIt_Relationlh@()

_-EA [l_t=Relatlo_p()
• notlf_hange()

• m_u'_Bn_lmoint()

_run()
:_p,e rfotrnRel,ltbml_ip()

4_Nv_Rel=tmn=_ p(]
_rforrnDefauft()

" EA EventMutex !

:, (¢¢omThread= Pm:_ge) j

l _,,en'_r,,x()

• -EA E_n'dk4ulex() ,
_ "_._()

_,mit()

__±__

, set()
I _bwk(l

l _mlume()

L

[- EA ModelPr_

• cmateMc:x_l()
, _4__A Mod_lPro=y(}
_mn

_EA l_o_elPmxy()
_p,conver.nput(l

L

E,',__,L_,=-
l'nGhtldrlm : mlf_ltrlng, EA DaaelTr_nz_fom'_
[_t_r_Rol_ionflhipe : Ihrt<EA DIIl_Rolmt_,on#_p>
I_mAnaly_i#Name : _rmg

E An=h_K)

.,o=teAn_'yJ_()
_g=t_meE=tim=t=()

mT'_q)

41_addOataRelat_hip()

DataTransformer

The DataTransformer is an abstraction for a class that transforms input data values

into output data values. It has two DataElementSets that contain the input and

output values of the transformer. The DataTransformer "watches" its input

DES and automatically performs the transformation when all of its inputs have

been set (i.e., its input DES changes to the "ready" state). A list of properties and

methods for this class can be found in Table 6-1. The DataTransformer inherits

from the Subject and Observer classes, so it also contains the properties and
methods shown in Tables 5-1 and 5-2.

6-9

Table 6-1. Properties and Methods for DataTransformer Class

Private Properties

mParent : A pointer to the parent of this data transformer or NULL if it has no parent.
EA_OataTransformer*

mlnput : EA_DataElementSet The set of data elements that acts as the input to the data transformer.

mOut0ut : The set of data elements that acts as the output of the data transformer.
EA_DataElementSet

miD : RWCString The ID of the analysis that the client uses to refer to the analysis.

mLabel : RWCString The label or name of the analysis that should be displayed to the user.

mXPos, mYPos : short The X & Y coordinates that the analysis should be displayed at in the GUI.

Public Methods

EA_DataTransformer (spec : Constructor. Initializes the input and output DESes based on the Trans-

EA_TransformerSpec&, par- formerSpec. Also registers as an observer to its input DES.
ent : EA_DataTransformer*) :
EA_DataTransformer

~EA_DataTransformer 0 : Destructor.

notifyChange (subj : Virtual method from EA_Observer. If the input DES is ready, start a thread
EA_Subject&) : void and run the data tzansformer in it.

getlnput 0 : Returns a reference to the data transformer's input DES.
EA_DataElementSet&

getOutput 0 : Returns a reference to the data transformer's output DES.
EA_DataElementSet&

getParent 0 : Returns a pointer to the transformer's parent analysis, or null if there isn't
EA_DataTmnsformer* one.

getlD 0 : RWCString& Returns the ID that the clients uses to refer to this DataTransformer.

getLabel 0 : RWCString& Returns the label displayed to the user for this DataTransformer.

getXPosition 0 : short Returns the X position that the DataTransformer should be displayed at.

getYPosition 0 : short Returns the X position that the DataTransformer should be displayed at.

setPosition (x : short, y : Sets the X & Y position that the DataTransformer should be displayed at.
short) : void

resetState 0 : void Resets the state of the DataTransformer.

DataRelationship

The DataRelationship class acts as a link between two DataTransformers. It waits

for the one of the DESs of the input DataTransforrner to be set, gets its data val-

ues, performs any necessary data transformation or conversion, and sets the values

in the one of the DESs of the target DataTransformer. If a breakpoint is set on the

DataRelationship, the DataRelationship pauses until the breakpoint is resumed. A

list of properties and methods for this class can be found in Table 6-2.

6-10

...Aviation System AnalYsi s Capability Executive Assistant Beta...........Version

Table 6-2. Properties and Methods for DataRelationship Class

Private Properties

mlnput : EA_DataElementSet* The DES that acts as the input to the data relationship.

mOutput : EA_DataElementSet* The DES that the data relationship writes its output to.

MBreakpoint : EA_Breakpoint* The breakpoint object for this relationship, or null if no break-

point is set.

MSpecName : string The name of the data relationship specification (if any) to use for

this relationship.

Public Methods

EA_DataRelationship (in :
EA_DataTransformer&, out :

EA_DataTransformer&, specName : const
RWCString& = "") : EA_DataRelationship

NotifyChange (subj : EA_Subject&) : void

-EA_DataRelationship 0 :

SetBreakpoint (type : EA_BreakType) : void

ResumeBreakpoint 0 : void

Constructor.

If the input DES is ready, perform the relationship and set the

values of the output DES.

Destructor.

Sets a breakpoint on the data relationship. The argument specifies
whether the breakpoint should apply before or after the relation-

ship is executed.

Resumes execution of the data relationship if a breakpoint is set.

Breakpoint

The Breakpoint class provides the ability to pause analyses at specified points

during execution. The Breakpoint class inherits from the EventMutex class, which

allows the Breakpoint class to suspend execution of the current thread and then

resume when an event is received. A list of properties and methods for this class

can be found in Table 6-3.

Table 6-3. Properties and Methods for Breakpoint Class

Private Properties

mPreConversion : bool Specifies whether the breakpoint should be applied before

(if true) or after (if false) the DataRelationship is performed.

Public Methods

isPreConv 0 : bool Returns whether the breakpoint should be set before or after
the data relationship (including any necessary conversion) is
executed.

isSet 0 : bool Returns whether or not the breakpoint is currently "set".

break 0 : void Breaks the current thread of control (i.e. the data relation-

ship which called the breakpoint) until resume is called.

resume 0 : void Resumes the breakpoint, which allows the data relationship
which called it to continue.

6-11

THREADS PACKAGE

The Threads package contains classes that support multithreaded execution. They

are used primarily to provide the ability to execute models in parallel. The classes

act as object-oriented wrappers that support basic multithreading. The Thread

class acts as a base class for classes that require a separate thread of execution in a

program. The Mutex class provides a locking mechanism for classes that can be

used by more than one thread at a time and must ensure that certain operations are

executed by only one thread at a time. The EventMutex class is used to block a

thread until an external "event" occurs. The only change to this package for the

Beta version was the addition of the EventMutex class to support breakpoints. The

class diagram for the Threads package is shown in

Figure 6-6.

Figure 6-6. Threads Class Diagram

EA Thread

4_pmThread : pthread t

_'EA Thread()

4'-EA_Thread()
_tart()
4_Stop()
*'io_n()
_=$delay()

'_'Sself()
_run()

d_dispatch()
i

E.A_Mutex

_i_pmMutex : pthread_mutex_t

_EA Mutex()
_-EA Mutex()

_ock()
_uniock()
_t_ocV()

EA_EventMutex

4b, mEvent : p'_hread_condJ

_EA_EventMutex()
4_-EA_EventMutex()

'sign()

%roadcast()

EventMutex Class

The EventMutex class is used to suspend the execution of one or more threads

until an "event" occurs and is fired by another thread. It is primarily used to sup-

port breakpoints where a data relationship is paused until the user selects to re-

sume execution. A list of properties and methods for this class can be found in
Table 6-4.

6-12

..A via ti°n system Analysis Capability Executive Assistant Beta Version

Table 6-4. Properties and Methods for EventMutex Class

Private Properties

mEvent : pthread_cond_t The id of the underlying POSIX event which is used to un-

lock the mutex.

Public Methods

Constructor.

Destructor.

Returns whether or not the "event" associated with this

mutex is true or not.

Suspends execution of the current thread until the mutex is

released by another thread calling "signal" or "broadcast."

Triggers the event and allows a single suspended thread to

continue execution.

EA_EventMutex 0 :
EA_EventMutex

-EA_EventMutex 0

isSet 0 : bool

wait 0 : void

signal 0 :void

broadcast 0 : void

UTILITY PACKAGE

Triggers the event and allows all waiting threads to continue

execution.

The Utility package contains miscellaneous utility classes used by the Analysis-

Server. For the ASAC EA Beta version, a ConversionUtils class was added that is

used to convert between CORBA and internal data representations when passing

data to and from the GUI client. The package diagram for the Utility package is

shown in Figure 6-7.

Figure 6-7. Utility Package Class Diagram

EA_ConversionUtils

_$convert()
• $convert()

I EA_Evaluate

_,mExpression : string

_nDataElements : EA_DataElementSet&
-%va_aluatei i

• EA_Evaluate()
dlbevalExpression()
_evalConditional()
_l_evalLogicalOr()
_l_evalLogicalAnd()
_l_evalEquality()
d_evalRelational()
gll_evalAddition()
d_evalMultiply()
_lPevalU nary()
_bevalPrimary()
_evalldentifier()

ConversionUtils Class

The ConversionUtils class is used to convert DataElementSets to and from its

CORBA counterpart, the DataElement sequences. The ConversionUtils class is

6-13

usedto convertdataastheyarepassedto andfrom theGUI client.A list of prop-
ertiesandmethodsfor thisclasscanbefound in Table6-5.

Table 6-5. Properties and Methods for ConversionUtils Class

Public Methods

convert (in : Converts a CORBA DataElement sequence into a
EA::DataElementSeq&, out : DataElementSet object.
EA_DataElementSet&) : void

convert (in : Converts a DataElementSet object into a CORBA
EA_DataElementSet&, out : DataElement sequence.
EA::DataElementSeq&) :void

ANALYSIS SERVER PACKAGE

The Analysis Server package acts as the driver for the AnalysisServer component

of the ASAC EA. It also acts as the interface to the GUI client component and

drives the classes defined in the DataTransformer package that form the backbone

of the application. The class diagram for the Analysis Server package is shown in

Figure 6-8.

6-14

...Aviati°n system Analysis Capability Executive Assistant Beta Version

Figure 6-8. Analysis Server Class Diagram

EA_CorbaServer

(from Application Packable)

i,_ sBOA : CORBA::BOA_:_tr

/ _EA CorbaServer()
/ '_-EA CorbaServer()
/ _'edd(_orbaObject()
/ *execute()
/_'_'_hanaleSignal()

la_Sshutdown()

' _1_\ ¸

EA_AnatysisServer

_.execute()
*.EA AnalysisServer()
~ E.. AnelysisServer()

I

• creates -

<<interface>> !

I_(fi'omSubject Ot:_erver Packa

_ *.notJfyChange()

L_

i

__ EA,_Anelys_sQI_e ryer

r4_mSession : RWCStdng

_mUsememe : RWCString

_loginUser()

[_notJfyChange()*.notilyE mail()

observes --

<<interface>>

EA::AnatysLsServer

*.logm user()
*.getdirectory()
_'list_analyses()
*'get_status()
_jet_use_)
"_get_specification ()
_run_scenario()
_,msume_scenario()
_kcancel scenario()
*.resetscenario()
*.creata scenario()
_et_specification()
$set_brsekpoint()

implements
I
I

EA_AnalysisServer_i

mSession : size_t
mSessions : rr_p<string, string>
mScenanos : map<string, EA_Analysis*>

4Hogin_user()
*.getdirectory()

_'list_analyses()
t_ststus()
t_users()

*.get_specification()
-9 *.runscenario()

_msurne scenario()
_w'..ancel_scena riO()
_reset scenario()
4_create_scenarto()
_'bset_specification()
_set_bmakpoint()
4_$shutaown()

'ilkSauttlenticataUser()

4i_$convertSpec()

I

:I
EA Analysis

from Data Transformer Packacje)
411PEA_Ane|ysis()

_*- EA_Analysis()
4_$creeteAnalysis()
_getTin'mEstimate()

_'run() . _.
41PaddDataT ranstom'ler_j

_lllkaddDataRelationship()
jt,$c_esnupChildmn()

AnalysisServer Class

The AnalysisServer class inherits from the CorbaServer class and provides the

driver for the AnalysisServer application. The execute method instantiates an

AnalysisServer_i CORBA object, and then waits for requests. A list of properties

and methods for this class can be found in Table 6-6.

6-15

Table 6-6. Properties and Methods for AnalysisServer Class

Public Methods

execute 0 : void Creates an analysis server object and waits for requests.

EA_AnalysisClient 0 : Constructor.
EA_AnalysisClient

~EA_AnalysisClient 0 : Destructor.

AnalysisServer_i Class

The AnalysisServer_i class implements the CORBA AnalysisServer interface and

forms the interface to the GUI client. A list of properties and methods for this

class can be found in Table 6-7.

Table 6-7. Properties and Methods for AnalysisServer_i Class

Private Attributes

mSession : size_t Counter used to generate scenario Ids.

mSessions : map<string, string> List of active scenarios associated with the user that is executing
them.

mSeenarios : map<string, EA Analysis*> List of active scenarios associated with the actual Analysis object

responsible for executing the scenario.

Public Methods

Iogin_user (Iogin : Loginlnfo, callback : Logs the user into the system and registers their GUI to receive

EA::Client_ptr) : boolean updates to analysis owned by the given user.

getdirectory (Iogin : Loginlnfo) : Directory Returns a recursive listing of all directories and files that the given
user has access to.

listanalyses (Iogin : Loginlnfo) : Analysis- Returns a list of active analyses that are "owned" by the given user.

Seq The user is authenticated before any data is returned.

get_status (scenario : ObjectlD, model Returns the current status (RUNNING, DONE, etc.) of the given
ObjectlD :) : EA::Status scenario or model.

get_users (Iogin : Loginlnfo) : StringSeq Returns a list of all known users in the system.

getspecification (Iogin : Loginlnfo, see- Returns all the information (the specification) about the given sce-
nario : ObjectlD, model : ObjectlD) : Speck nario or model that the GUI client needs. This includes lists of in-

fication puts and outputs, labels, x & y position, as well as any models/

analyses that it contains and the relationships between them.

run_scenario (scenario : ObjectlD) : void Starts the scenario running if all of required inputs have been set.

resume_scenario (scenario : ObjectlD) : Resume.
void

cancel_scenario (scenario : ObjectlD) : Cancel and close the scenario.
void

resetscenario (scenario : ObjectlD) : void Resets the scenario so that it can be executed again.

create_scenario (Iogin : Loginlnfo, name : Creates a scenario based on the given analysis. Loads the scenario
string) : ObjectlD into memory so that it can be run.

6-16

Aviation System Analysis Capability Executive Assistant Beta Version

Table 6-7. Properties and Methods for AnalysisServer i Class (Continued)

setspecification (Iogin : Loginlnfo, spec : Set the inputs, outputs and x & y position on the given analysis or
Specification, scenario : ObjectlD, model : model.

ObjectlD) : void

set_breakpoint (scenario : ObjectlD, rela- Set a breakpoint on the given data relationship. The breakpoint

tionship : int, type : EA::BreakType) : void type determines the type of breakpoint. "NONE" removes any cur-

rent breakpoint.

shutdown 0 : void Cancel all analysis and shutdown the server.

Private Methods

authenticateUser (Iogin : EA::Loginlnfo) : Returns true if the given username and password refer to a valid
bool user, false otherwise.

convertSpec (dt : EA_DataTransformer, Extracts the specification of an analysis of model so that it can be

spec : EA::Specification) : void passed to the client via CORBA.

AnalysisObserver Class

The AnalysisObserver class notifies the GUI client of state changes in any analy-

ses or models it is running. The AnalysisObserver class also handles e-mail notifi-

cation if the analysis is running in the background. A list of properties and

methods for this class can be found in Table 6-8.

Table 6-8. Properties and Methods for AnalysisObserver Class

Private Attributes

mSession : RWCStdng The session ID of the analysis that this object is observing.

mUsername : RWCString The username of the user running the analysis. This is used

to determine where to deliver updates to the state of the

analysis or its children.

Public Methods

IoginUser (username : Registers the client (GUI) callback with the AnalysisOb-
RWCString, callback : server object.
EA::Client_ptr) : void

notifyChange 0 : void Notifies the client of a state change in one of its analyses or
models.

notifyEmail 0 : void Sends e-mail to the user on completion of an analysis if the

user is not logged in.

DSSA Substage 4-7: Develop State Diagrams

No changes were made to the state diagrams for the ASAC EA Beta version.

6-17

DSSA Substage 4-8: Develop Deployment Diagrams

The Deployment Diagram for the ASAC EA Beta version is shown in Figure 6-9.

The model is generic, showing that there will be one or more GUI Clients, an

AnalysisServer on riker, the database on uhura, and as a ModelServer on worf that

will run multiple Model Applications.

Figure 6-9. Proof of Concept Deployment Diagram

riker

TCP/IP, IIOP

J ModelServer
jJ

TC P/I P

GUI Client AnalysisClient _'._
osagent uhura

Object Database

DSSA STAGE 4reDEVELOP AND REFINE BETA

VERSION USER APPLICATION DOMAIN MODELS

The following sections contain the user application domain models that were de-

veloped for the ASAC EA Beta version client.

Sixteen new classes were developed during implementation of the client part of

the Beta version. They are:

• DataElementSet

• DataElement

• LinkSet

• Link

• LinkCanvas

• Orb

• Client

6-18

ModelSet

Model

Analysis

AnalysisManager

AnalysisNode

• Access

• AnalysisDesktop

• ModelFrame

• MainFrame.

Theseclasseswill bediscussedin moredetail throughouttheDSSASubstagesin
thischapter.

DSSA Substage 4-3: Develop Use Case Diagrams

No changes were made to the use case diagrams for the ASAC EA Beta version.

DSSA Substage 4-4: Develop Interaction Diagrams

The Interaction diagrams developed for the ASAC EA Beta version client are:

• Login

• Loading an Analysis

• Running an Analysis.

6-19

LOGIN

Figure 6-10. Login Sequence Diagram

: =

An_ !

.................

[Orb ! Anaiysisserver ! ! E rr0i/Exit

[can't bind]

initialize !

_ = bind

• Ct'in .]
<
i

getLoginlnfo

validateLogin i

[validLogin]

getUsers

F
getCu rrentAnalysesj

: i getDirectory I

i L
I

[invalid Login] I

i i

Figure 6-11. Login Collaboration Diagram

1 : initialize

r . _ i

5: getLoginlnfo

2: bind

6: validateLogin

9: getUsers

10: getCurrentAnalyses 4:[can1 bind]

11: getDirectory 7: [invaUdLogin]

Or___bb Error/Exit

Server

3: [binds]

8: [validLogin]

6-20

Aviation System Analysis Capability Executive Assistant Beta Version

LOADING AN ANALYSIS

Figure 6-12. Loading an Analysis Sequence Diagram

openAnalysis

...... _-_c bseAnalysis

-<

openAnalysls

<:

getSpec

convert(EA.SDec, asac.Analysis)

<

frame = new Mo0elFrame

addOrRaise(frame)

I ModelFrame
!

=

I

J

Figure 6-13. Loading an Analysis Collaboration Diagram

2: closeAnalysis

:>

' 6: frame = new ModelFrame

1: openAnalysis i I --

..... l 7: addOrRaise(frame), Manager -.

\

\

5_ c_onvert(EA.Spec, asac.Analysis)

\

\ _--

3._openAnalysis
\i 4: getSpec

Model

F r _'n___ee _

i D esktop_

Server

6-21

RUNNINGANANALYSIS

Figure 6-14. Running an Analysis Sequence Diagram

l _ " _ orb " Ana|¥s $ser_,er i " _ "

start
_. runAnalysis reset_scenario

>+_+ . .>..1
run_scenario .+ J

+. I

.... _ breakpoint

AnalysisServer

cats Client

asynchronously to i

updateState and updateState

notify breakpoints i

,+

J
t>L

Figure 6-15. Running an Analysis Collaboration Diagram

3: resetscenario 5: breakpoint

1: start 2: runAnelysis 4: runscenario 6: updateState

i Mananer " Server
;_ +-- +- -- j

Client

DSSA Substage 4-5: Develop Package Diagrams

Package diagrams are used for readability purposes only. When a design becomes

large, it is convenient to separate groups of classes into separate packages. The

client design has been divided into seven class packages:

• The DataElement

• The Links

• The Server

• The Model

• The Tree

6-22

• TheDesktop

• The Frame

Figure 6-16 shows the POC client package diagram. The package associations

among the classes are denoted by the dashed lines.

Figure 6-16. ASAC EA Client Package Diagram

I
i

ostaElement]

Package I

j •

I Server Package

Links Package

i Model Package

I T,eePack:a_,,

t /I

Desktop

Package

ASAC Client

iFrame Package I

L

DSSA Substage 4-6: Develop Class Diagrams

Class diagrams are used to illustrate class models and their relationships with

other classes. The class diagrams will be shown with their package.

THE DATAELEMENT PACKAGE

The DataElement package contains the classes that provide information about the

data elements or parameters for the ASAC models. The package includes the

DataElementSet and the DataElement classes. The class diagram is shown in

Figure 6-17.

6-23

Figure 6-17. DataElement Package Class Diagram

Vo_., i

DetaE _m entEet

4¢S _ ultEet

_lta EDm am°at 0

•oatl E_e ntlSm/_o unt _tl

e<c.t0 :mr

41,1/el Jnaax : at): 41ii© OalaEleme_t

_°l_ay : Stag) : IDohlElomen I

_)eet(dndex : mt, de : OetaElemanl) : void

4b_tsl_¢>) oop_lt_ml DIIIBEDmenISet) : OaladElememlEel : i AbltrllatTeb_eMode_-- !

i4k(<ltt tu=>_ ¢.Q9 _frot'_ : Oiw.E.k_r_tsat, to :Oi11t E_r_er_aet): vc=d (km m==.l

qq o$ e IIStr InGI 0 : 8t dng i

............. - _/Dltl_Jlmint

,i_ TEXT :total

INTEGER : k_l = 2

ell P.OAT :int. a

BOOLEAN :el= 4

_ ENt)M :t.t. S

411 OATE : mt * 6

! _ TIME let= ?

!q_m R_,_ C_ U=_ '_

4b_ C_u mnCount :hnt

Itl=mCc_u mn'r y_e : hill

¢ou m eEa_V bid : boolee n[]

!_ce_m nKay : Saree0

IVnCo_um _Nam • : 8t_ng(I

!QI,¢. Celum n Un_t_ String(l

I_pm Co_ m;_,Form st : ISldn II[]

J _lOmt_E lea eel(I

! _DatiE_ment_¥ : SlnnO, rowCount : let, columnCount : el)

ialJl==,e(= tam _'n a_'/O : *¢=

14p_=¢a.tost_), v==

] 4toS_'_nEO :atone

: _<_lltlc>> ©o_y_om : OiLlMElem_m_ Dale)amen t

! _<etitm>) copy(tram : OalJElement, to : DalaE_mant) : ve=d

_alKly 0 : 81fl_Ig

4_NtKey(key 8tdng) : vo=

4heel N Ira1 e0 :Sl_ng

! 'l_m tibiae(name : at_9l : you

klV=_0 : booce=_

• lmlVl=ble {vislble : bOOlean): _1

_getRow C_ntO : _nl

q_litRow C¢,untlmw G_nt : el): reid

_atCo_m _Count 0 : _t

4_=lCobm nCoa m(cok_m_ Count : all: ve¢l

I 'lbEetCc_iumnTypeJ©o; :tnQ :_t

4)wtCoium _Typm_ype ; _1,¢o1: mr): vo=

41g alGOlu m n Cllse|©ot : Inl) : Gee|

•Eet CCdum nNi m e(o_l : mr) ; 8trine

_ t_el_m nName (name T atr_ E, eel : lnl) :void

qt'mtC_um nKly(=bd : G_thg,¢_Ol ant) : void

'lk_etCo_umnUnlts(eol : _nll : litres

_kl_lCOlu m RLIn _l(un IIs : ltr_8, ¢01 : Int I : void

q_etColum nOo mike(el :_nO : 8tdrdl

4)lo tColum nDem&_n{4omii_ : Slag. ml : mr) : vo_d

_Colum nLmld=(col :lnl) :8ling

q)te_c_t_ m _Ltm I%a_m _t° : II, tr_g, ¢=o1= mr) : _o_d

_et Cmum nF arm it(l_Ol :mr) : StdflE

_tCo_m _Folm m_o_mt : Bathe,col : ira): yea

4_Co_m NEdltl hie(eel : i_t) : M>o_in

'l_lee IGOllUm hie dill ble(edKabll) :boo_een, ¢ol : Inll: vokl

• getVlaueAt(mw : m_ =_ol : _ : Ouliat

lTab[dlt_(¢oI : mr) : TaJ_kiCeE ddor

4_l;etEditor(row Value : ant. cotVllue : all : JGompone_t

_etEalloK¢= : *re): JComl_onent

i_<lt_t_e>=. Eet_t m(IBelw een(ltr : stag, et_Sll a : Slime, elrE_d :Stag) :Etlt_g

6-24

Aviation System Analysis Capability Executive Assistant Beta Version

The DataElementSet Class

A DataElementSet is a collection of DataElements objects keyed by the

DataElement's key. The DataElementSet is derived from the dynamic

java.util.Vector class with DataElement objects as elements. A list of properties

and methods for this class can be found in Table 6-9.

Table 6-9. Properties and Methods for DataElementSet Class

Public Properties:

nullSet • DataElementSet I An empty set of Datal=lements.
B

Public Methods:

DataFlementSet 0 : Constructor.

DataElementSet (count : int) : Constructor with the number of DataElements in the
set.

GetCount 0 : int Returns the number of Datal=lements in the set,

setCount (count : int) : void Sets the number of DataElements in the set.

get (index : int) : DataElement Returns the DataElement at the specified position.

get(key : String) : DataElement Returns the DataElement with the specified key.

set (index : int, DataElement : Sets the DataElement at the specified position.
DataElement) : void

copy(from : DataElementSet) : Creates a copy of the specified DataElementSet.
DataElementSet

copy(from : DataElementSet, to Copies from the DataElementSet to the specified Da-
: DataElementSet) : void taElementSet.

toSetString 0 : String Converts the DataElementSet to a string.
i

The DataElement Class

A DataElement represents a parameter or piece of data to a model. Each

DataElement can be a two-dimentional table containing a fixed number of rows

and a fixed number of columns. The columns consist of strings, integers, floating

point numbers, booleans, enumerated values, dates, or times. A DataElement also

can be a text file or a string containing multple fines. DataElements are derived

from AbstractTableModel, which provides the basic methods for the TableModel

interface. A fist of properties and methods for this class can be found in
Table 6-10.

6-25

Table 6-10. Properties and Methods for DataElement Class

Public Properties:

Enumerated (column) types of a DataElement.STRING : int = 0

TEXT : int = 1

INTEGER : int = 2

FLOAT : int = 3

BOOLEAN : int = 4

ENUM : int = 5

DATE : int = 6

TIME : int = 7

Private Properties:

mKey : String Unique identifier for this DataElement.

mVisible : boolean Determines if the DataElement is displayed as one of the

model parameters in the GUI.

mRowCount : int The number of rows in the DataElement.

mColumnCount : int The number of columns in the DataElement.

mColumnType : int_ The types of each column (i.e., string and integer).

mColumnEditable : booleanr] Used by the client/GUI to determine which columns are
editable.

mColumnKey : String[.] Unique identifier for each column.

mColumnName : String[] Used by the client/GUI as the display label for each col-
umn.

mColumnUnits : Stdng[] The value units for each column(i.e., meters and inches).

mColumnDomain : String['] The domain of each column(i.e., length and time).

mColumnFormat : String[] A string used to format/validate the value for each column.

reValue : Object[][] The actual DataElement values for each row and column.

Public Operations:

DataElement 0 : Constructor.

DataElement (key : String, rowCount : int, co- Constructor with the key, number of rows and columns

lumnCount :int) : specified.

toString 0 : String Basic method to output the DataElement as a string.

copy (from : DataElement) : Create a new copy a DataElement.
DataElement

copy (from : DataElement, to : Copies a DataElement.

DataElement) : void

Returns/specifies the desired attribute of the DataElement.getKey 0 : String

setKey (key : String) : void

getName 0 : String

setName (name : String) : void

6-26

Table 6-10. Properties and Methods for DataElement Class (Continued)

isVisible 0 : boolean

setVisible (visible : boolean) : void

getRowCount 0 : int

setRowCount (rowCount : int) : void

getColumnCount 0 : int

setColumnCount (columnCount : int) : void

getC,olumnType (col :int) :int

setColumnType (type : int, col : int) : void

getColumnClass (col : int) : Class

getColumnName (col: int) : String

setColumnName (name : String, col : int) : void

getColumnKey (col : int) : String

setColumnKey (label : String, col : int) : void

getColumnUnits (col :int) : String

setColumnUnits (units : String, col: int) : void

getColumnDomain (col : int) : String

setColumnDomain (domain : String, col : int) :
void

getColumnLimits (col : int) : String

setColumnLimits (limits : String, col : int) : void

getColumnFormat (col : int) : String

setColumnFormat (format : String, col : int) :
void

isCellEditable (row : int, col : int) : boolean

isColumnEditable (col : int) : boolean

setColumnEditable (editable : boolean, col :

int) : void

getValueAt (row : int, col : int) : Object

setValueAt (aValue : Object, row :int, col : int)
: void

getTableEditor (col : int) : TableCellEditor Returns a TableEditor for the specified column.

getEditor (rowValue : int, colValue : int) : Returns an editor for the specified row and column of the

Jcomponent DataElement.

getEditor (col : int) : Jcomponent Returns an editor for any element in the specified column.

THE LINK PACKAGE

The Link package contains classes that link ASAC models or analyses to each

other. The package contains the LinkSet, Link, and LinkCanvas classes. The class

diagram is shown in Figure 6-18.

6-27

Figure 6-18. Link Package Diagram

tank

*l_A_: _..o

• 84 Skl_r.J_KBEFORE : fat. 1

...... _1_ _ r A JI_AK AFTER:ira: 2

,_s-0 _ ,,.._,__0._"_y.
_n_ouol_ount : ira) :

qtCo,B_l_tnlN_O: Iltnrq; 41_mp_ 4 : Id_d_) :

:c.n _.n

: %_talx_O : Jtab_

i _p.a : m) : ,e,a

%,aS.aeO : ,_

F I 4'.,_d_l,_) > nmslmlcao_tat. : rot) : Co_,

.... _ _ . %_¢._0,_ : e.*_

.................... "-,,,,0,, _,c_.0,_,,,: at.,_,) P*_

The LinkSet Class

A LinkSet is a collection of Link objects keyed by index. The LinkSet is derived

from the dynamic java.util.Vector class with Link objects as elements. A list of

properties and methods for this class can be found in Table 6-11.

Table 6-11. Properties and Methods for LinkSet Class

Public Properties:

nullSet : LinkSet An empty set of links.

Public Methods:

LinkSet 0 : Constructor.

LinkSet (count : int) : Constructor with the number of links in the collection.

getCount 0 : int Returns the number of links in the collection.

setCount (count : int) : void Sets the number of links in the collection.

get (index : int) : Link Returns the link at the specified index.

set (index : int, link : Link) : void Sets the link at the specified index.

toSetString 0 : String Converts the LinkSet to a string.

The Link Class

A Link connects two Models, an input model to the output model. The Link class

is similar to the DataRelation class on the server. Breakpoints may be placed be-

fore or after the transformation in the link. The link is represented by a line on the

analysis graph pane and an arrow is used to indicate the direction of the data trans-

6-28

Aviation System Analysis Capability Executive Assistant Beta Version

formation. A list of properties and methods for this class can be found in

Table 6-12.

Table 6-12. Properties and Methods for Link Class

Public Properties:

$CLEAR : int = 0 Enumerated states of a link.

$BREAK_BEFORE : int = 1

$BREAK_AFTER : int = 2

$arrowLength : double = 15 The length of the arrow to paint.

SarrowAngle : double = 0.5 The angle (radians) of the arrow to paint.

$arrowWidth : double = 8 The width of the arrow to paint.

Private Properties:

mState : int = CLEAR The link state.

mHit : boolean = false Maintains if the breakpoint has been hit.

Public Methods:

Link 0 : Constructor.

toString 0 : String Converts a Link to a string.

getLabel 0 : Jlabel Returns a label or icon to symbolize the state of the link.

getlnput 0 : Model Returns the Input model.

setlnput (input : Model) : void Specifies the input model.

getOutput 0 : Model Returns the output model.

setOutput (output : Model) : void Specifies the output model.

isHit 0 : boolean Checks to see if the breakpoint on the link has been hit.

setHit (hit : boolean) : void Specifies the hitting of the breakpoint on the link.

getState 0 : int Returns the enumerated state of the link.

setState (state : int) : void Specifies the state of the link.

toggleState 0 : void Toggles the enumerated state of the link.

setStateColor (state : int, color : Specifies the color for the enumerated state.
Color) : void

getStateColor (state : int) : Color Returns the color of the specified state.

getStateColor 0 : Color Returns the color of the link.

setStatelcon (state : int, icon : Specifies the icon for the state.
Imageleon) : void

getStatelcon (state : int) : Im- Returns the icon for the specified state.
ageleon

getStatelcon 0 : Imageleon Returns the icon for the state of the link.

getCenter (label : JLabel) : Point Internal helper routine needed when drawing the lines to the

center of the input and output models.

6-29

Table 6-12. Properties and Methods for Link Class (Continued)

getlnputCenter 0 : Point Returns the center of the input model.

getOutputCenter 0 : Point Returns the center of the output model.

paint (g : Graphics) : void Routine to paint a link on a graphic object.

updateLabel 0 : void Updates the label or icon to reflect the current enumerated
status of the link.

The LinkCanvas Class

A LinkCanvas is the background canvas of an Analysis graph model frame. The
LinkCanvas is used to draw the link lines and handle mouse events for the links.

The LinkCanvas is derived from JComponent and implements the MouseListener

interface. A list of properties and methods for this class can be found in
Table 6-13.

Table 6-13. Properties and Methods for LinkCanvas Class

Public Properties:

maxDistance : double = 10.0 The maximum pixel distance the mouse can be away from a
link.

Public Methods:

LinkCanvas (links : LinkSet) : Constructor requires a set of Links.

paint (g : Graphics) : void Paints the links on the canvas.

findLink (e : MouseEvent) : Link Routine to determine which link the mouse is near.

computeDistance (link : Link, p : Internal helper routine to compute the distance between a
Point) : double link and a point.

computeDistance (pl : Point, p2 Internal routine to compute the distance betweento points.
: Point) : double

THE SERVER PACKAGE

The Server package contains the classes that deal with the communication be-

tween the client and the server. The class diagram is shown Figure 6-19.

6-30

Aviation System Analysis Capability Executive Assistant Beta Version

Figure 6-19. Server Package Diagram

::0tom aga¢)
r...

• <<statle>> getAnalyeieSarver0 : EA.AnelyslsServer

• <<at=,tlc>> gelCllent0 : aeac.Client

_<<slatlc>> getLoginlnfo 0 : EA.Loglnlnfo

• <<statlc>> gelAnalyelsLlet() : esac.ModelSet

_<<etatlc>> galUs_Liet() : String(]

4b<<e111c>> tsAnalysisSer_tReady() :boolean

• <<etatic>> isCllentReady 0 : boolean

• <<8talc>> leReady() : boolean

e<<slatlc>> inlt(args : Str/ng{]) : void

_<<etatlc>> updateAnalystsServer0 : void

_<<sta|c> > opeflAnalysls(enalysisKey : Slrlng, copy : boolean) : asac.Analysis

• <<alallc>> runAnalyela(analystsKe¥ : String) : void

• <<etettc>> resumeAnalyeis(analysis : Analysis) : void

t<<etale>> eaveAnalysts(analysis : Analysis) : void

•<<static>> canceiAnalysis(analysisKey : String) : votd

_'<<$tatic>> convert(analysis : asac.Analyeis, from : EA.SDeclflca_on) : asac.Model

• <<etatic>> convert(analysis : asac.Anelysts, Jrom : EA.Specificatlon, to : aeec.Model) : void

• <<stallc>> cortvert(analysla : asac.Anelyele, create : boolean, from : EA.Spectfica_on, to : asac.Model) : void

_l'<<statlc>> convert(parent : asac.Anelysie, from : EA,Reietionehip) : asac.Link

_l'<<statlc>> convert(parent : asac.Analysls, from : EA.Re_ltlonship, to :aee, c.Lmk) : void

• <<statlc>> convert(from : EA,DataElement[]) : asac.DataElementSet

• <<staUc>> convert(from : EA.DataEiement[], to : aeac.DataElementSef) : void

_<<etaic>> con_rt(from : EA.DataElement) : asac.DataElement

• <<etatic>> con_rt(from : EA.DataElemlmt, to : asac.DataElement) : vok:l

• <<e_tlc>> convert(from : aeac.OataElementSet) : EA.OatsElemanll[]

_<<ataUc>> convert(from : asac.DetaElemenlSet, to : EA.DataEiement[]) : void

• <<elallc>> com,_rl(from : asac,DataElement) : EA.DateElement

• <<slatic>> con_Brt(from : asac.DataElemenl, to : EA.DalaElemant) : void

ClientlmplBase

I (_m EA)

L . -$m Cltent

Client

_update_etate(scenarioKay : String, modelKey : String, state : EA.Stetus) : void

_breakpoint(ecenarioKey : String, id :Int) : vok:l

_<<etattc>> addFrameListener(matnFrame : MainFrame) : void

• <<_itetic>> removeFremeListenec(malnFrame : MainFrame) : void

The Orb Class

The Orb is a static class that contains all the operations that a client needs for

communicating with the server. The operations include initializing the communi-

cation link; retrieving various information from the server; and loading, saving, or

executing analyses. A list of properties and methods for this class can be found in
Table 6-14.

Table 6-14. Properties and Methods for Orb Class

Public Methods:

getAnalysisServer 0 : EA.AnalysisServer Returns the global instance of the EA.AnalysisServer.

getClient 0 : asac.Client Returns the global instance of Client.

getLoginlnfo 0 : EA.Loginlnfo Returns the global instance of EA.Loginlnfo.

6-31

Table 6-14.. Properties and Methods for Orb Class (Continued)

getAnalysisList 0 : asac.ModelSet Returns the global list of analyses currently running.

getUserList 0 : StringD Returns a list of users registered to use the ASAC EA.

isAnalysisServerReady 0 : boolean Checks to see if the analysis server is ready.

isClientReady 0 : boolean Checks to see if the client is ready.

isReady 0 : boolean Cheeks to see if the Orb is ready which implies that

the analysis server and the client are both ready.

init (args : String[]) : void Initializes the Orb.

updateAnalysisServer 0 : void Updates the analysis server.

openAnalysis (analysisKey : String, copy : Opens an analysis on the server.
boolean) : asac.Analysis

runAnalysis (analysisKey : String) : void Executes an analysis on the server.

resumeAnalysis (analysis : Analysis) : void Resumes an analysis on the server.

saveAnalysis (analysis : Analysis) : void Saves an analysis on the server.

cancelAnalysis (analysisKey : String) : void Cancels an analysis on the server.

convert (analysis : asac.Analysis, from :
EA.Specification) : asac.Model

convert (analysis : asac.Analysis, from :
EA.Specification, to : asac.Model) : void

convert (analysis : asac.Analysis, create :
boolean, from : EA.Specification, to :
asac.Model) : void

convert (parent : asac.Analysis, from :
EA.Relationship) : asac.Link

convert (parent : asac.Analysis, from :
EA.Relationship, to : asac.Link) : void

convert (from : EA.DataElement[]) :
asac.DataElementSet

convert (from : EA.DataElementD, to :
asac.DataElementSet) : void

convert (from : EA.DataElement) :
asac.DataElement

convert (from : EA.DataElement, to :
asac.DataElement) :void

convert (from : asac.DataElementSet) :
EA.DataElement[]

convert (from : asac.DataElementSet, to :
EA.DataElement[]) : void

convert (from : asac.DataElement) :
EA. DataElement

convert (from : asac.DataElement, to :
EA.DataElement) : void

Data converting routines between the client and the
server.

6-32

The Client Class

The Client is derived from EA._ClientlmplBase and contains all the operations

that the AnalysisServer needs for communicating with a client. The operations

include updating model states or setting breakpoints. All client MainFrames must

register and unregister with the global instance of Client to receive updates from

the server. A list of properties and methods for this class can be found in

Table 6-15.

Table 6-15. Properties and Methods for Client Class

Public Methods:

update_state (scenarioKey : String,
modelKey : String, state • EA.Status)
: void

Called by the server to update the state of the model
specifications.

breakpoint (scenarioKey : String, id : Called by the server when a breakpoint is hit.
int) : void

addFrameListener (mainFrame : Method used to register a mainframe with the client.
MainFrame) : void

removeFrameListener (mainFrame : Method used to unregister a mainframe.
MainFrame) : void

THE MODEL PACKAGE

The Model package contains classes that concern ASAC models and analyses.

The package consists of the ModelSet, Model, and Analysis. The class diagram is

shown in Figure 6-20.

6-33

Figure 6-20. Model Package Diagram

Vector j

(from ull)

J
ModelSet

i _fmm aaa©I

nullSet : ModelSet -reModels

"-odelsetO i
_ModelSet(count :)nt)

_getCount 0 :lnt

_etCount(counI : tnt) : '*Old j

_get(Index :Int) : Model

_get(key : String) : Model

_set(index : Int, model: Modal) : void ! i

_add(model : Model) : void : |(from ====)

_remo_e(modetKey : String) : void "_L_" *f (16 WAITING i int = 0 ;

remo,(model : Model) : void | e$ READY : tnt = 1
_toSetStrlng0 : String

............ 416 RUNNING : Int = 2

_; DONE : Int = 3

i 4,$ ERROR : Int = 4

14_pmStete : Int = WAITING

_mKey : String

-Input

oetaElementset-Output " "_:

I A"elv;.so.ktop
.......'......... -:mDe, :op-

!(l,_m =w=_gl -m LebeF

ffmm ovent)

M°=,e==.._; _i'ii.....
c_o..... . I I

I
I

i !
Model " !: "

M o uedllletMo_,_ne r l Analys

ffmm rome)

i

SAnely$1sO

_toStringO : Strlng

! _getModelsO : ModelSet

I _'getLinkeO : LlnkSet

_getGrephFrameKey0 : String

! _bsetGrephFrameKey(key : String) : void

_:i _gotGraphFrame0 : ModelFrame

_k_etlnputModelO : Model

i _*getOutputModel0 : Model

I _setSteto(slete : Int) : VOid

*'getlnput0 : DataElementSet

i _ettnput(del : DateElementSet) : VOFd

: _getOutput0 : DataElementSet

_l'setOutput(des : DateElementSet) : void

i
I

-mLInk$

dll_llDescrlption : String

ql=mTtmeEstlmate : String

............................ _ -m OutputM oriel

_odel 0

_toStrlng 0

_getKey 0

q_setKey 0

_getDescrlptton 0

_JetDescrlptlon0

_gelTImeEstimate0

_JetTImeEstlm_te0

_getAnelyels 0

OsetAnalyiHs0

_get DosktoP0

_setDesktop0

_getlnput0

_seltnput0

_9etOutput0

%etOutput0

_getState0

%etState0

_<<statlc>> eetSteteColor 0

_<<statlc>> getStaleColor 0

_getStateColor0

_<<Stetlc> > setStatelcon0

_'< <static> > getStatelcon 0

_getStatelcon 0

_getLabet 0

_getName0

_etName0

_)updateLobel0

-m InputModel
i

! (_rom .,=c) i

The ModelSet Class

A ModelSet is a collection of Model objects, each with an associated key. The

ModelSet is derived from the dynamic java.util.Vector class with Model objects
as elements. A list of properties and methods for this class can be found in
Table 6-16.

6-34

Table 6-16. Properties and Methods for ModelSet Class

Public Properties:

nullSet : ModelSet I An empty ModelSet.

Public Methods:

ModelSet 0 : Constructor.

ModelSet (count : int) : Constructor specifying the number of models in the
collection.

getCount 0 : int Returns the number of model in the collection.

setCount (count : int) : void Sets the number of modes in the collection.

get (index : int) : Model Returns the model at the specified index.

get (key : String) : Model Returns the model with the specified key.

set (index : int, model : Model) : void Set the model at the specified index.

add (model : Model) : void Adds a model to the collection.

remove (modelKey : String) : void Removes the model with the specified key from the
collection.

remove (model : Model) : void Removes the specified model from the collection.

toSetString 0 : String Converts the collection to a string.

The Model Class

A Model transforms an input DataElementSet to an output DataElementSet. A

model is very similar to the DataTransformer class on the server. The Model class

implements the MouseListener and the MouseMotionListener interfaces. A Model

also is part of an Analysis and contains a label on the Analysis graph pane. A list

of properties and methods for this class can be found in Table 6-17.

Table 6-17. Properties and Methods for Model Class

Public Properties:

Enumerated states of a Model.WAITING : int = 0

READY : int = 1

RUNNING : int = 2

DONE : int = 3

ERROR : int = 4

Private Properties:

mState : int = WAITING The enumerated state (Waiting, Ready, Running,

Done, Error) of the model.

mKey : String The unique key for the model.

6-35

Table 6-17. Properties and Methods for Model Class (Continued)

mDescription : String The narrative description for the model.

mTimeEstimate : String The estimated time for the model to execute.

Public Methods:

Model 0 : Constructor.

toString 0 : String Converts the model to a string.

getKey 0 : String Returns the unique identifier for the model.

setKey (key : String) : void Specifies the unique identifier for the model.

getDescription 0 : String Returns a narrative description for the model.

setDescription (description : String) : void Sets the narrative description for the model.

geffimeEstimate 0 : String Returns the estimated time it takes for the model to
run.

setTimeEstimate (timeEstimate : String) : Sets the estimated time for the model to run.
void

getAnalysis 0 : Analysis Returns the parent analysis for the model.

setAnalysis (analysis : Analysis) : void Sets the parent analysis for the model.

getDesktop 0 : AnalysisDesktop Returns the desktop for the model.

setDesktop (desktop : AnalysisDesktop) : Specifies the desktop for the model.
void

getlnput 0 : DataElementSet Returns the input data element set for the model.

setlnput (des : DataElementSet) : void Sets the input data element set for the model.

getOutput 0 : DataElementSet Returns the output data element set for the model.

setOutput (des : DataElementSet) : void Sets the output data element set for the model,

getState 0 : int Returns the enumerated state of the model.

setState (state : int) : void Sets the model state.

setStateColor (state : int, color : Color) : Specifies the color for the enumerated state.
void

getStateColor (state : int) : Color Returns the color for the specified state.

getStateColor 0 : Color Returns the color for the state of the model.

setStatelcon (state : int, icon : Imagelcon) : Specifies the icon for the state.
void

getStatelcon (state : int) : Imagelcon Returns the icon for the specified state.

getStatelcon 0 : Imageleon Returns the icon for the state of the model.

getLabel 0 : Jlabel Returns the label representing the model.

getName 0 : String Returns the text on the label that names the model.

setName (name : String) : void Specifies the text on the label for the model.

updateLabel 0 : void Updates the label according to the state of the model.

6-36

TheAnalysisClass

An Analysisis aModel with asetof modelsandasetof links.An Analysiscon-
tainsaGraphFrame,aModelFramewith agraphof themodelcalling sequence.
TheAnalysisalsocontainsan inputandoutputModel ontheAnalysisGraph-
Frame.A list of propertiesandmethodsfor thisclasscanbefoundin Table6-18.

Table 6-18. Properties and Methods for Analysis Class

Private Properties:

• String [The key for the graph model frame.mGraphFrameKey
m

Public Methods:

Analysis 0 : Constructor.

toString 0 : String Converts an analysis to a string.

getModels 0 : ModelSet Returns the models of the analysis.

getLinks 0 : LinkSet Returns the links of the analysis.

getGraphFrameKey 0 : String Returns the unique key for the analysis graph on the desk-

top.

setGraphFrameKey (key : Sets the unique key for the analysis graph frame on the

String) :void desktop.

getGraphFrame 0 : Model- Returns the ModelFrame with the analysis graph.
Frame

Override specific model methods.getlnputModel 0 : Model

getOutputModel 0 : Model

setState (state :int) : void

getlnput 0 : DataElementSet

setlnput (des : DataElementSet)
: void

getOutput 0 : DataElementSet

setOutput (des : DataElement-

Set) : void

THE TREE PACKAGE

The Tree package contains classes that organize the ASAC analyses. The package

contains the AnalysisManager, AnalysisNode, and Access. The class diagram is

shown in Figure 6-21.

6-37

Figure 6-21. Tree Package Diagram

! MoUtet:incteaer < <Interface> >
!

i TreaE xpensionLlstener!(,,or..v,nt) i (,*.. ,v,._) <,tom*v,ntl
L _ :

...... _ 711.............. -_

, I I

! i i.
A nalysis Manager

i (t,om,J,¢)

_)AnalyslsManage_freme : MainFrame)

_l'get Pens() : JSolollPane

_getAnelysls 0 : Analysis

_bopenAnalysis(analysisKey : Strlng, copy : boolean) : void

_IcloeeAnalysis 0 : vOid

qPgetActton(s : String) : Action

DefaultM utableTreeNode

: (from tree)

!_ J_;'_--I " 'L
(Item gwlng) i! "

........... 2................ I
Analy sisN (xle

Ilrom ,Im¢) II

Ill, reName : String

i _l_mOwner,: S t.rlng................. !

¢l'Anatys_Noda0 J

• AnalysisNode(name : String] !

• AnalyslsNode(name : String, allowsChldren : boolean) I

_sLeatO : boolean
I

qkgetNameO : String

4ksstName(name ; String) : void

q)getOwner 0 : String

_etOwner(owner : String) : void

4l'getAcceee0 : DefaultListModel

4kllddAccees (a : Access) : void

_emo'._Access(i : int) : void

ql,getAccesatnclex(userNeme : String) : int

_can(userName : String, level : int) : boolean

_ll'Pr0PertiesDiatog(parent : java.ewt.Fr=me) : void .

MainFrame :

i- 3So,_,,_:,n;]
(from =w Ing)

ACG_S

: (_,o,. ====)

' 41;$ READ--I-nt =-0

4_ WRffE :Int= I

415 DELETE : Int = 2

II|l_mLavol : boolaan[]

_nUserName : String

0. _
" _9etLevelCount 0 : Int

_AccessO

OgetUserNameO : String

qll'satUserNeme(userName : String) : void

41'can(levol : Int) : boolean

_et(le'_d : Int, lag ; bootean) : void

_toStrin90 : Strfng

The AnalysisManager Class

The AnalysisManager class uses the tree paradigm to manage the set of analyses

on the server. The AnalysisManager contains a JTree, which organizes the

AnalysisTreeNodes. The AnalysisManager implements the MouseListener, the

MouseMotionListener, and the TreeExpansionListener and provides a front end

for analysis operations like copying, renaming, and displaying properties. A list of

properties and methods for this class can be found in Table 6-19.

6-38

Aviation System Analysis Capability Executive Assistant Beta Version

Table 6-19. Properties and Methods for AnalysisManager Class

Public Methods:

AnalysisManager (frame : Constructor.
MainFrame):

getPane 0 : JScrollPane Returns the pane of the tree.

getAnalysis 0 : Analysis Returns the current analysis.

openAnalysis (analysisKey : Opens the specified analysis.
String, copy : boolean) : void

eloseAnalysis 0 : void Closes the current analysis.

getAction (s : String) : Action Returns the specified action.

The AnalysisNode Class

An AnalysisNode is a tree node that contains the information necessary for load-

ing and setting properties of the analysis or scenario on the server. The

AnalysisNode is derived from a DefaultMutableTreeNode and provides the name

and owner along with permission levels for the scenario or analysis. A list of

properties and methods for this class can be found in Table 6-20.

Table 6-20. Properties and Methods for AnalysisNode Class

Private Properties:

mName : String The name of the analysis.

mOwner : String The owner of the analysis.

Public Methods:

AnalysisNode 0 : Constructor.

AnalysisNode (name : String) : Constructor.

AnalysisNode (name : String, Constructor.
allowsChildren : boolean) :

isLeaf 0 : boolean Overridesthe isLeaf0 method from DefaultMutableTree-
Node.

getName 0 : String Returnsthe name of the analysis.

setName (name : String) : void Specifiesthe nameof the analysis.

getOwner 0 : String Returnsthe ownerof the analysis.

setOwner (owner : String) : void Specifies the ownerof the analysis.

getAccess 0 : DefaultListModel Returnsthe accesslist.

addAccess (a : Access) : void Adds an accessto the list.

removeAccess (I : int) : void Removes an access from the list.

6-39

Table 6-20. Properties and Methods for AnalysisNode Class (Continued)

getAccesslndex (userName :
String) :int

Returns the access level of the specified user.

can (userName : String, level : Test if the user has the access level.
int) : boolean

propertiesDialog (parent :
java.awt.Frame) : void

Displays and allows the user to edit the properties of the
analysis.

The Access Class

The Access class controls the permission levels a user has on a particular analysis

or scenario. A list of properties and methods for this class can be found in Ta-
ble 6-21.

Table 6-21. Properties and Methods for Access Class

Public Properties:

READ : int = 0 Enumerated permission levels.

WRITE : int = 1

DELETE : int = 2

Private Properties:

mLevel : boolean[] The list of permission levels (read, write, and delete).

mUserName : String
Public Methods:

The user's name.

Access 0 : Constructor.

getLeveICount 0 : int The number of levels.

getUserName 0 : String Returns the user's name.

setUserName (userName : Sets the user's name.
String) : void

can (level : int) : boolean Tests for user permission on the specified access level.

set (level : int, flag : boolean) : Sets or clears the specified access level.
void

toString 0 : String Converts the access to a string.

THE DESKTOP PACKAGE

The Deslctop Package contains the AnalysisDesktop and the ModelFrames to be

placed on the desktop. The class diagram is shown in Figure 6-22.

6 -40

Aviation System Analysis Capability Executive Assistant Beta Version

Figure 6-22. Desktop Package Diagram

[
! Analys_s Deo ktop

l(ffom am©)

4_l_ctions : m yActions = new myActlons 0

4l'Anll I_ i De s kid p()

qlgetDe sktop0 : JDell ktopPane

_get Me do IFram eCou nt0 :lnt

4k_etModolFram aN(i: int): ModelFramo

• remove(modelFm me : ModelFmm e) :void j

4kltdd(mod elFram e : ModeIFrem e) :void

_getCh lid ren_oaren Fro me : ModelFram e) : Mod elFrsm eD I

_getModelFrame (key :String) : ModelFmme]

_eddOrRaia e(modelFrame : ModelFmmo) :void

't'getAction(s : Siring) : Action -m Desktop

........ _ - ! Model

.......... _ (tree nac)

mModa, [[

i <<Interface>> Ii Into m alFrsm eListener

i . 1i (trom Gvent)

" " ModelFm me '
(from amc)

K": I
:','a-'.7:m" m.):vo d

_g ot Model 0 : Model

_ etModel(model : Model) : void

4)getDillplay0 : String

_s stDisplay(display: String) :void

Og etlnput 0 : DataE lee e ntSet

_ etlnput(des :DateElemenlSat) :void

_etOutput 0 : DataElem entSet

_ etOulput(des :DataE;ementSe_J :void

% etKe_) : String

_g elFram e() : Jinte malFre me

4bJDetDesktop0 : AnalyllisOes ktop

_gelC hildren 0 : ModetFr&m eD

_¢1oC to gO0 : void

_q:IoOK 0 : _oid

qlcloCencel() : void

qq:loA,pplyO : void

_g etG raphPenel 0 : JScrolPene

_needsSeplrlttePenel(de : DetaElem ant) :boolean

• ieEditable(de : DltaEIement) :boolean

• isEditable(des :DataElementSet) :boolean

_g etlOPa ne I0 :JComponent

_g etDESPo nel(d es : Data Eiem e ntSet, islnput: boolean) :JCom ponent

OgetDEPanel{detaElem ant : DataElement, isrnputDE : boolean) : JComponent

4'getSepamtsDE Psnel(dat=Elem ent: Dot=Element) : JComponent

i i
!

: i
i i

+Input i+Output
/,

OateElem entSet

i prom =,,,¢)

! -m Frame.

_ JlnternalFrsm e

i (tree "*_0)

-mlnput

-mOutput

-m Copy_nput

-m CopyOutpuf

-m PerentFrem •

" I('_ ""_) I

The AnalysisDesktop Class

The AnalysisDesktop Class provides the interface for adding ModelFrames to the

desktop. The AnalysisDesktop provides a hierarchical relationship between

ModelFrames. A list of properties and methods for this class can be found in
Table 6-22.

6-41

Table 6-22. Properties and Methods for AnalysisDesktop Class

Public Methods:

AnalysisDesktop 0 : Constructor.

getDesktop 0 : JdesktopPane Returns the actual desktop.

getModelFrameCount 0 : int Returns the number of frames on the desktop.

getModelFrameAt (I : int) : Returns the frame at the specified index.
ModelFrame

remove (modelFrame : Model- Removes a frame from the desktop.
Frame) : void

add (modelFrame : Model- Adds a frame to the desktop.
Frame) :void

getChildren (parentFrame : Returns the children of a ModelFrame on the desktop.

ModelFrame) : ModelFrame[]

getModelFrame (key : String) : Returns the modelframe with the specified key.
ModelFrame

addOrRaise (modelFrame : Adds or raises the frame on the desktop.
ModelFrame) : void

getAction (s : String) : Action Returns the specified desktop action.

The ModelFrame Class

ModelFrames are the internal desktop frames on the AnalysisDesktop. Each

ModelFrame has a parent (except the top level) and children, which are Model-

Frames. The ModelFrames also may contain a set of input and output

DataElementSets that may be edited or viewed by the user or updated by the

server. A list of properties and methods for this class can be found in Table 6-23.

Table 6-23. Properties and Methods for DataElementSet Class

Public Methods:

ModelFrame 0 : Constructor.

getParentFrame 0 : ModelFrame Returns the parent model frame.

setParentFrame (parentFrame : Specifies the parent model frame.
ModelFrame) : void

getModel 0 : Model Returns the model.

setModel (model : Model) : void Specifies the model.

getDisplay 0 : String Returns the display.

setDisplay (display : String) : void Specifies the display.

getlnput 0 : DataElementSet Returns the input DataElementSet.

6-42

Table 6-22. Properties and Methods for AnalysisDesktop Class (Continued)

setlnput (des : DataElementSet) : void Specifies the input DataElementSet.

getOutput 0 : DataElementSet Return the output DataElementSet.

setOutput (des : DataElementSet) : Specifies the output DataElementSet.
void

getKey 0 : String Returns the unique key for the modelframe.

getFrame 0 : JintemalFrame Returns the internal frame.

getDesktop 0 : AnalysisDesktop Returns the desktop.

getChildren 0 : ModelFrame[] Returns the children on the desktop.

doClose 0 : void Closes the modelframe.

doOK 0 : void Performs the OK button action.

doCancel 0 : void Performs the Cancel button action.

doApply 0 : void Performs the Apply button action.

getGraphPanel 0 : JScrollPane Returns the graph panel or parent of the model-
frame.

needsSeparatePanel (de : DataEle- Checks if the Data.Element needs to be displayed on
ment): boolean a separate pane].

isEditable (de : DataElement) : boolean Checks if the DataElernent is editable.

isEditable (des : DataElementSet) : Checks if the DataElementSet is editable.
boolean

getlOPanel 0 : Jcomponent Returns the display panel for the input and output
DataElementSets.

getDESPanel (des : DataElementSet, Returns the display panel for the DataElementSet.
islnput : boolean) : Jcomponent

getDEPanel (dataElement : Returns the display panel for the DataElement.
DataElement, islnputDE : boolean) :

Jcomponent

getSeparateDEPanel (dataElement : Returns the display panel for the DataElement when
DataElement) : Jeomponent it needs a separate panel.

THE FRAME PACKAGE

The Frame Package contains the main window frame. The class diagram is shown

in Figure 6-23.

6-43

Figure 6-23. Frame Package Diagram

Waf_tled_tmr

_rom event)

.......ii_iL.̧.....

MainFrame ,0, JFreme

(from eW _g)

(l)] JSplltPene

'qkgetApplet0 : Jepplet I1mm =w in.g)_

qb'getFrame0 : JFtama i AnalyslsManuBer

_bgetSplitPene0 : JSplitPane _

_getDesktoPO : AnalysieOasktop !_rom a==c)

r
_getMenuBer0 : Analy_lieManuBer : ;, J/It) p|et

_:loCIose0 : void _ -_ [from sw.Jng) ;

_getAction(s : String) : Action

_'getlmagelcon(iconNeme : String): Imagelcon _ . ; AnelysisDesktop ;
.......................... i

I(t'om =,=c)

The MainFrame Class

The MainFrame is the main window frame of the ASAC EA. A list of properties
and methods for this class can be found in Table 6-24.

Table 6-24. Properties and Methods for MainFrame Class

Public Methods:

getApplet 0 "Japplet Returns the applet.

getFrame 0 : Jframe Returns the frame.

getSplitPane 0 : JSplitPane Returns the SplitPane object.

getDesktop 0 : AnalysisDesktop Returns the desktop.

getMenuBar 0 : AnalysisMenu- ReturnstheMenuBar.
Bar

doCIose 0 : void Unregisters with the ORB and closes the mainframe.

getAction (s : String) : Action Returns the specified action.

getlmagelcon (iconName •
String) • Imagelcon

Gets an image from local disk or URL.

DSSA Substage 4-7: Develop State Diagrams

The Client GUI uses colors and icons to display the states of Models and Links or

breakpoints. The actual states of the objects are maintained by the AnalysisServer.

Thus, the state diagrams for the client classes are the same as the state diagrams

for the classes on the AnalysisServer. The Model class on the Client uses the same

states as the DataTransformer class on the AnalysisServer. The Models have four

states: Waiting, Running, Done and Error. The Client GUI uses an icon to repre-
sent each state:

6-44

A ClockrepresentsWaiting.

A FlagrepresentsRunning.

A CheckrepresentsDone.

An "X" representsError.

In additionto theseicons,theborderof themodel'slabelon theanalysisgraph
usescolor to representthestate.

* Bluefor Waiting

Greenfor Running

Greenfor Done

Redfor Error.

EachAnalysisscenariois a subclassof Modeland,therefore,inheritsthestates
andiconsfrom theModel class.

TheLinks orbreakpointsaresimilar to theDataRelationshipclasson theAnaly-
sisServerand,consequently,usesthesamestatediagrams.The Links havethree
states,Clear,BreakBefore,andBreakAfter, to representwherethebreakpoint
will occur.TheLinks haveanarrowdrawnon thelineto indicatedirectionof the
datatransformation.TheLinksuseline colorwith aniconto representthestate.

t ForaClearLink, the line is blue.

ForaBreakBeforeLink, theline is redwith an iconnearthestarting
Model.

For aBreakAfter Link, the line is redwith aniconneartheendingModel.

TheLinks alsouseaBooleanattributeto determineif thebreakpointhasbeen
reached.

DSSA Substage 4-8: Develop Deployment Diagrams

The Deployment Diagram is the same as shown in Figure 6-9.

DSSA Substage 4-9: Review and Iterate

Review and iterate the items developed in DSSA stage 4.

6-45

DSSA STAGE 5--IDENTIFY REUSABLE ARTIFACTS

The goal for this phase of the domain-engineering process is to populate the soft-

ware architecture high-level design(s) with components that may be used to gen-

erate new applications in the domain.

The following substages of DSSA stage 5 will be completed during the ASAC

design effort:

• 5-1 Develop and collect the reusable artifacts

• 5-2 Develop each module

• 5-3 Requirements, verification, and testing

• 5-4 Review and iterate.

DSSA Substage 5-1" Develop and Collect the Reusable Artifacts

No additional components need to populate the software architecture for the
ASAC EA Beta version.

DSSA Substage 5-2: Develop Each Module

The development environment and process are the same as described in

Chapter 5.

DSSA Substage 5-3: Requirements, Verification, and Testing

ASAC EA BETA VERSION REQUIREMENTS

As previously mentioned, fifty-two requirements were applicable to the ASAC

EA Beta version. They are:

Analysis Execution

t AE0001 The analyst shall have the capability to execute an analysis if an

off-line administrator has granted the appropriate permissions.

AE0002 The analyst shall have the capability to view and modify model

input data at user-defined intermediate steps in the analysis. Any modifi-

cations to the model inputs shall be logged.

• AE0003 When an analysis is executed, the names of the models that are

executed, as part of that analysis, will be logged to a log file.

6-46

4 AE0004 When an analysis is executed, its inputs and outputs will be

logged.

• AE0005 When a model is executed, its inputs and outputs will be logged.

• AE0006 Upon completion of the execution of an analysis, the results will

be presented to the user if the user is logged into the system.

• AE0007 Analysis and Model outputs shall be viewable in both raw and

converted format.

AE0008 ASAC will provide a message to the user indicating a rough esti-

mated time required to execute an analysis. Note: This will be a very rough

estimate, as there are currently no plans to perform an interrogation of net-

work and system(s) loading at the time of execution to provide a better es-

timate, not to mention the affect of data set size on model execution time.

• AE0009 ASAC EA shall support the execution of analyses in the "back-

ground" after users have logged off of the system.

AE0010 The ASAC EA shall optionally mall a notification of analysis

completion or suspension to the user, if the user is not logged into the

system.

• AE0011 Users shall be able to cancel the execution of an analysis at any

user pre-defined intermediate step.

AE0012 Users shall be able to log back in and check the progress of, or

cancel "active" analyses for which they have the appropriate permissions.

When an analysis finishes, it shall remain "active" until the user views its

outputs.

AE0013 Analyses can be restarted from the beginning after their execution

has finished or been canceled.

AE0014 Users shall be able to set breakpoints on any data relationship.

Breakpoints shall be settable before or after data conversion occurs in the

data relationship.

AE0015 Users shall be able to set preferences regarding e-mail delivery of

various status messages that can get sent when they are not logged into the

system.

Analysis Management

• AM0001 The capability shall be provided to create an analysis by using

off-line tools.

6-47

• AM0002 The Analyst shall have the capability to view an existing analysis

if an off-line administrator has granted the appropriate permissions.

• AM0003 The capability shall be provided to update an analysis by using
off-line tools.

• AM0004 The Analyst shall have the capability to delete an analysis if an

off-line administrator has granted the appropriate permissions.

• AM0005 The Analyst shall have the capability to copy an analysis if an

off-line administrator has granted the appropriate permissions.

• AM0006 The capability shall be provided to store an analysis to the server

for private or public use by using off-line tools.

AM0007 The Analyst shall have the capability to store the results of an

analysis to the server for private or public use if an off-line administrator

has granted the appropriate permissions.

Analysis Specification

• AS0001 An analysis may contain one or more models or analyses.

• AS0002 Analyses may have default input values.

• AS0003 Default analysis input values may be overridden by the user.

Distributed Computing

• DC0001 ASAC will accommodate operation of its models at remote sites.

• DC0002 ASAC EA shall provide the capability to allow analysts to run

more than one analysis concurrently.

• DC0003 ASAC EA shall support the concurrent execution of more than

one instance of the same analysis on the same or different machines.

• DC0004 ASAC EA shall support the concurrent execution of more than

one instance of the same model on the same or different machines.

• DC0005 The physical location of the models shall be transparent to the
ASAC EA.

DC0006 ASAC EA shall support a distributed application server model

that allows multiple clients and servers to be located on different physical
host machines.

6-48

Aviation System Analysis Capability Executive Assistant Beta Version

Error Handling

General

• DC0007 ASAC EA shall allow users to run more than one analysis si-

multaneously.

• EH0001 The user shall be notified if the web server is not available (han-

dled by the browser)

• EH0002 The user shall be notified if the analysis server is not available.

• EH0003 The user shall be notified if a model server is not available.

• EH0004 The user shall be notified if the analysis server encounters a fail-

ure during analysis execution.

• EH0005 The user shall be notified if a model server encounters a failure

during model execution.

• EH0006 The user shall be notified if an invalid data type or value for

analysis/model input is specified.

• EH0007 The user shall be notified if the database is not available or if a

database access error is encountered.

Model Specification

GE0001 The user application will have an intuitive graphical user inter-
face that adheres to the IBM CUA standards.

MS0001 Models shall have valid default values upon initialization (when

added to an analysis).

MS0002 An off-line administrator shall have the capability to add new

models to the system by:

Developing (or adding developed) models that match a well-defined
interface.

Creating model specifications in a TBD database that specifies the

model parameters, e.g. inputs, outputs, and description.

Writing and adding model wrappers that translate/map the well-

defined model interface data element sets (DESs) to the model-specific

interface for the model being added to the system. (i.e. translators from

DESs to model inputs and translators from model outputs to DESs)

6-49

• MS0003Modelsmayhavedefaultinput values.

• MS00(ODefaultModelinput valuesmaybeoverriddenbytheuser.

• MS0005EA modelinputsmaybeanASCII file.

Security

• SE0001An off-line systemadministratorwill definethelevelof authori-
zationfor analysesandscenariosonaper-useror per-groupbasis.

SE0002Theowningusershallhavepermissionsto view & executean
analysisif anoff-line administratorhasgrantedtheappropriatepermis-
sions.

• SE0005An off-line administratorshallcontroluseraccessto models.

• SE0006Usersmustlog into thesystem.

• SE0007UserauthenticationmustbeatleastassecureasHTTPbasic
authentication.

• SE0010An off-line administratorshallbeableto definegroupsof users
for authorization.Userscanbelongto multiplegroups.

SE0011Scenarioswill haveRead,Write, andDeletepermissionsassoci-
atedwith them.Analyseswill only haveReadpermissions.Anybodyable
to readananalysiscancreatea scenariofor thatanalysisandexecuteit.

Thesefifty-two requirementswill bevalidatedaspartof theASAC EA Betaver-
sionacceptance.

ASAC EA BETAVERSIONIMPLEMENTATION

Theanalysesusedfor implementingtheBetaversionaretheanalysesthatwere
implementedfor theASAC Model IntegrationPrototype(First GenerationASAC)
anddocumentedin theAviation System Analysis Capability Executive Assistant

Design.

ASAC EA BETA VERSION TESTING

Procedures are being created for testing each of the ASAC EA Beta version re-

quirements. The documentation and results of these tests will be published in the

NASA Contractor Report for the ASAC EA for fiscal year 1999.

6-50

Aviation System Analysis Capability Executive Assistant Beta Version

ASAC EA BETA VERSION RELEASE 1

The first release of the ASAC EA Beta version will be available for use by se-

lected users on 31 October 1998. It will be accessible from the ASAC Web site at

http://www.asac.lmi.org.

DSSA Substage 5-4: Review and Iterate

Review and iterate the items developed in DSSA stage 5.

6-51

Chapter 7

Conclusion
i_iii !_i_i_i_i_iili!_iiiilii!i_iii_.........................i_i,i_,__i_'_i ,ii ii___ _:: _:: :::: _::_:: __::_::_:_:_::_iiii_i_ii_i ii'_i:i_ii_ii_ii_i_i_ilii_iii_i_ii,ii_ii_i__i_i_i_ii_iii_iii_ii!_ii_iii_i_!i_iiiiii_iiii_ili i_ii_iiiiii!i_i!i!_ii̧ilii__!_i!i_!ii!_!i!!!!ii_ii_!!'ii!ii!!!ili!iii_iiili̧i_ill_i!_i'i_ii_!ii!_i i!_ii_i!_iiiiii_iii,iii_iiii_iii!ii_iliiiiili_il_ii__i_ii_iii_i_i _:i_i_i_iii i_iii_iii_iiiii_i_i_i_!ii!ili_i_ilili_ili¸ii_ililiilli_ii_iiii_i_i_i_i_i,i i,i_ii_!i_ilili_ii iili_iiii,liillili_i!¸i!ii_i_i_ii_iii__ii_i¸i

The work performed this fiscal year on the ASAC EA system builds upon the

work documented in the ASAC EA Architecture Description and the Aviation

System Analysis Capability Executive Assistant Design.

We successfully developed, tested, and demonstrated the ASAC EA POC to

NASA in February and March 1998. We then used published and respected

methodologies for expanding the ASAC EA POC design for the ASAC EA Beta

version system. The expanded design includes a Use Case diagram, Interaction

(Sequence and Collaboration) diagrams, Package diagrams, Class diagrams, State

diagrams, and Deployment diagrams. We are completing the development of the

ASAC EA Beta version system and plan to field the version in late October 1998.

We also evaluated OOD management systems for use in the ASAC EA system.

Furthermore, we selected additional software libraries and development tools.

Work will continue on the ASAC EA Beta version, and the ASAC EA version 1.0

will be fielded in fiscal year 1999.

7-1

BIBLIOGRAPHY

Bellin, David and Susan Suchman Simone. "The CRC Card Book," Addison-

Wesley, 1997.

Booch, Grady. "Object Solutions, Managing the Object-Oriented Project,"

Addison-Wesley, 1997.

Coad, Peter, and Mark Mayfield, "Java Design: Building Better Apps & Applets",

Yourdon Press, 1997.

Common Object Request Broker Architecture, OMG, July, 1995.

Common Object Services Specification, OMG, March, 1995.

CORBAServices: Common Object Services Specification, Vol. 1, March 1995.

Domain Specific Software Architectures (DSSA),

http://www.sei.cmu.edu/arpa/evo/dssa-sum.html.

Flanagan, David, "Java in a Nutshell", O'Reilly, 1997.

Fowler, Martin, and Kendall Scott. "UML Distilled--Applying the Standard Ob-

ject Modeling Language," Addison-Wesley, 1997.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. "Design Pat-

terns--Elements of Reusable Object-Oriented Software," Addison-Wesley,

1995.

Hughes, Cameron, & Hughes, Tracey. Object-Oriented Multithreaded Using

C++. John Wiley & Sons, Inc. New York. 1997.

Lockheed Martin Advanced Concepts Center and Rational Software Corporation.

"Succeeding with the Booch and OMT Methods, A Practical Approach,"

Addison Wesley, 1996.

McConnell, Steve, "Code Complete", Microsoft Press, 1993.

Mowbray, Thomas J. and Ron Zahavi. "The Essential CORBA," Wiley, 1995.

Orfali, Robert, and Dan Harkey, "Client/Server Programming with Java and

CORBA", Wiley Computing Publishing, 1997.

Orfali, Robert, Dan Harkey, and Jeff Edwards. "Instant CORBA," Wiley, 1997.

Bib-1

Orfali, Robert, Dan Harkey, and Jeri Edwards. "The Essential Client/Server Sur-

vival Guide," Wiley, 1996.

Orfali, Robert, Harkey, Dan, and Jeri Edwards. "The Essential Distributed Objects

Survival Guide," Wiley, 1996.

Quatrani, Terry, "Visual Modeling with Ratoinal Rose and UML", Addison-

Welsey, 1998.

Rational Software Corporation UML Resource Center, "UML Document Set Ver-

sion 1.1," September 1997, http://www.rational.com/uml/references/.

Roberts, Eileen, and James A. Villani. "ASAC Executive Assistant Architecture

Description Summary," NASA Contractor Report 201681, April 1997.

Roberts, Eileen, James A. Villani, Mohammed Osman, David Godso, Brent King,

and Michael Ricciardi. "Aviation System Analysis Capability Executive As-

sistant Design," NASA Contractor Report 207679, May 1998.

Rumbaugh, James, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. "Object-

Oriented Modeling and Design," Prentice Hall, 1991.

Tracz, W. and L. Coglianese. "Domain-Specific Software Architecture Engineer-

ing Process Guidelines, ADAGE-IBM-92-02B." Loral Federal Systems,

Owego, 1992.

Bib-2

Appendix A

ASAC EA POC As-Run Test Procedures

This appendix contains the six procedures that were completed during ASAC EA

POC testing. They are

• Analysis Execution test procedures TP-AE-1 and TP-AE-2

• Analysis Management test procedure TP-AM-1

• Analysis Specification procedure TP-AS-1

• Distributed Computing procedure TP-DC-1

• Error Handling procedure TP-EH-3.

TEST PROCEDURE TP-AE-1

Requirements tested:

• AE0001 - The Analyst shall have the capability to execute an analysis if

an off-line administrator has granted the appropriate permissions.

• AE0006 - Upon completion of the execution of an analysis, the results will

be presented to the user.

• AE0008 - ASAC will provide a message to the user indicating a rough es-

timated time required to execute an analysis.

A-1

|.

Operator Actions

Login to riker and change directory to

/home/kander/ea_poc".

2. Run the Visibroker SmartAgent in the

3.

4.

background. Type: "osagent &"

Run the ModelServer. Type:

_ModelServer -conf igFile

poc. cfg &"

Run the AnalysisCl_. Type:

"AnalysisClient -analysis

poc

-logLevel 2"

5. Wait for the analysis to finish.

1.

2.

3.

4.

5.

Expected Results

None

None.

The ModelServer starts.

"CORBA Server Running..." is

displayed.

Analysis is started, and a time estimate

is displayed.

Analysisfinishesand _spl_sresults:
"asm : 160824.742268

profit = -5172.724227"

Pass or Fail and

PR Number

pass

pass

pass

A-2

TEST PROCEDURE TP-AE-2

Requirements tested:

• AE0003 - When an analysis is executed, the names of the models that are

executed, as pan of that analysis, will be logged to a log file.

• AE0004 - When an analysis is executed, both its default and user-defined

inputs and outputs will be logged to a log file.

• AE0005 - When a model is executed, both its default and user-defined in-

puts and outputs will be logged to a log file.

1.

2.

3,

4.

5.

Operator Actions

Login to riker and change directory (cd)

to " /home /kander /ea__poc ".

Run the Visibroker SmartAgent in the

background. Type: "osagent &"

Run the ModelSe_er. Type:
"ModelServer -configFile

poc.cfg &"

Run the AnalysisClient.Type:
"AnalysisClient -analysis

poc
-logFile log -logLevel 5"

Display the contents of the log file.

Type:

"more log".

1. None

2. None.

3.

Expected Results

4.

The ModelServer starts.

"CORBA Server Running..." is

displayed.

5.

The analysisis mnanditsresults we

displayed. Resultsshouldbe:
"asm = 160824.742268

profit = -5172.724227"

Log file is displayed, containing, in

this order, the names of the models

created, the links (data relationships)

between the models, the analysis input,

the input & output for each model, and

the analysis output.

Pass or Fail and

PR Number

pass

pass

pass

TEST PROCEDURE TP-AM-1

Requirements tested:

• AM0001 - The capability shall be provided to create an analysis by using

off-line tools.

• AM0003 - The capability shall be provided to update an analysis by using

off-line tools.

A-3

1.

2.

3,

4,

5.

Operator Actions

Login to riker and change directory

to _/home / kander / eapoc ".

Run the Visibroker SmartAgent in
the background. Type: "osagent
&-

Run the ModelSe_er. Type:
"ModelServer -configFile

poc.cfg &"

Inspect the file "poc. as" and con-

firm that it exists and contains the

specification for an analysis (i.e. that

it has been created). Type "more

poc. as"

Run the AnalysisClient. Type:
_AnalysisClient -analysis
poc"

6. Edit (updatei the file "poc. as"

using vi, emacs, or similar tool.
Change the "passengers" variable in

the "inputs" section from 156 to 300,

and save the changes.

1. None

2. None.

3.

4.

Expected Results

The ModelServer starts.

"CORBA Server Running..." is dis-

played.

The contents of the Analysis specification

file are displayed. It contains, a descrip-
tion, a time estimate, a list of data trans-

formers, a list of data relationships, a set

of inputs, and a set of outputs.

5. The analysis is run and its results are dis-

played. Resultsshouldbe:
"asm = 160824.742268

profit = -5172.724227"

6. The Analysis specification is updated.

Pass or Fail and

PR Number

pass

Pass, PR 1

pass

pass

TEST PROCEDURE TP-AS-1

Requirements tested:

• AS0001 - An analysis may contain one or more models or analyses.

AS0002 - Analyses may have default input values.

A-4

2.

3.

4.

5.

6.

7.

Operator Actions

Login torikerand change directoryto
-/home/kander /ea_loOC" .

Run the Visibroker SmartAgent in the

background. Type: "osagent &".

Run the ModelSe_er. Type:
"ModelServer -configFile

poc.cfg &".

Examine thespecification _rthe analysis

namedasl. Type"more asl.as".

Conftrrn that revenue-a & profit-a are

really analyses. List all analysis specifica-

tions by typing "ls *. as" .

Run the AnalysisClient. Type:
"AnalysisClient -analysis
asl".

Enter values for passengers and

stage_length when prompted. Enter "300"

for passengers and "1000" for

stage_length.

1.

2.

3.

4.

5.

6.

7.

Expected Results

None

None.

The ModelServer starts.

"CORBA Server Running..." is displayed.

The "dataTransformers" section of the analysis

contains two models (traffic & cost), and two

transformers which are analyses (revenue-a &

profit-a). Also, the "inputs" section lists 5 vari-

ables, two that are "WAITING" (require user

input), the others are "READY" (have de-

faults).

A list of all analysis specifications are dis-

played, including revenue-a & profit-a.

User is prompted for 2 inputs which do not
have default values. The other inputs (which

have default values) are not prompted for.

The analysis _ns, and results aredisplayed:

Resultsshouldbe:
"asm : 309278.350515

profit = -9938.085052"

Pass or Fail and

PR Number

pass

pass

pass

pass

Pass

TEST PROCEDURE TP-DC-1

Requirements tested:

DC0001 - ASAC will accommodate operation of its models at remote

sites.

DC0003 - ASAC EA shall support the concurrent execution of more than

one instance of the same analysis on the same or different machines for

one or more users.

DC0004 - ASAC EA shall support the concurrent execution of more than

one instance of the same model on the same or different machines for one

or more users.

DC0005 - The physical location of the models shall be transparent to the

ASAC EA.

A-5

Operator Actions Expected Results Pass or Fail and

PR Number

1. Login to riker and change directory to 1. None.
"/home / kander / ea__poc ".

2. Run the Visibroker SmartAgent in the background. 2. None.

Type: "osagent &"

3. 3. passThe ModelServer starts.
"CORBA Server Run-

ning..." and other messages are

displayed.

Run the ModelServer. Type: "ModelServer
-configFile riker.cfg -logLevel 4
&_

4. Lo_n toworf and change directoryto 4. None.

"/home /kander /ea_poc".

5. Run theModelServer. Type: "ModelServer '] 5. The M0delServer starts, pass
"CORBA Server Run-

ning..." and othermessages are

displayed.

-configFile worf.cfg -logLevel 4 &"

6. Login to spock and change directory to 6. None.

/ home / kander / ea._.po c ".

7. 7. The ModelServer starts, passRun the ModelSe_er. Type: UModelServer

-configFile spock.cfg -logLevel 4
&-

Verify the models are running on each machine.

Type "osfind" on riker.

Open two additional windows on riker & run the

AnalysisCiient in two different windows simulta-

neously. Type: "AnalysisClient

-analysis poc" ineach window.

8.

9.

I0. Examine the output from the ModelServers to en-

sure that requirement DC0004 was met.

11. Open an additional window on worf & run the

AnalysisClient on riker and woff simultaneously.

Type: "AnalysisClient -analysis

poc" on each machine.

"CORBA Server Run-

ning..." and othermessages are

displayed.

8. A list of models is displayed,

showing traffic & profit models

running on riker, cost & revenue

models running on worf, and

traffic & revenue models running

on spock.

9. Analyses are run, identical results

are displayed.

1'0. Each model of the same name

should have run more or less si-

multaneously, some on the same

machine, some on different ma-

chines.

11. Analyses are run, identical results

are displayed.

12. Same as #10 above.12. Again, examine the output from the ModelServers

to ensure that requirement DC0004 was met.

pass

pass

pass

pass

pass

A-6

...Appendix A" ASAC _ pOC As?Run Test Procedures

TEST PROCEDURE TP-EH-3

Requirements tested:

• El-10003 - The user shall be notified if a model server is not available.

I.

2.

3.

4.

5.

Operator Actions

Login to riker and change directory to

-/home/kander/ea_poc ".

Run the Visibroker SmartAgent in the

background. Type: "osagent &"

Run the ModelSe_er. Type:
"ModelServer -configFile
eh3.cfg &"

Vefi_theprofitmodelisnotmnning.

Type"osfind"onriker.

Run the AnNysisClient. Type:
"AnalysisClient -analysis

poc"

Expected Results

1. None.

2. None.

3. The ModelServer starts.

"CORBA Server Running..." is

displayed.

4. A list of object names (models) is dis-

played. The profit model should not

be among them.

5. Analysis is run, and an error should be

generated that the profit model could

not be found. Should display:
"Model Server Unavailable:

profit"

Pass or Fail and

PR Number

pass

pass

pass

A-7

Appendix B

Abbreviations

ASAC

AST

BOA

CGI

CORBA

CRC

DBMS

DES

DSSA

EA

FAA

GUI

IDL

MB

NASA

OMG

OMT

OO

OOD

ORB

PERL

POC

QRS

RAM

RCS

TBD

UML

Aviation System Analysis Capability

Advanced Subsonic Technology program

basic object adapter

Common Gateway Interface

Common Object Request Broker Architecture

Class-Responsibility-Collaboration

Database Management System

DataElementSet

domain-specific software architecture

Executive Assistant

Federal Aviation Administration

graphical user interface

Interface Definition Language

megabyte

National Aeronautics and Space Administration

Object Management Group

object modeling technique

object oriented

object-oriented design

object request broker

Practical Extraction and Report Language

Proof of Concept

Quick Response System

random-access memory

revision control system

to be determined

Unified Modeling Language

B-1

WWW World Wide Web

B-2

REPORT DOCUMENTATION PAGE
I Form ApprovedOMB No. 0704-0188

....-.-., o_= • =u,._, _[,,._. v ^ _-.¢_.w.._..._, °no to me um¢_ or Me.n_ent ¢n¢1 B_. Page*_m_k Redootton Ptolect (0704-011_}, Ws=h_on. IX;: 20503

1. AGENCY USE ONLY (Live blink) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1999 Contractor Report
4, TITLE AND ShuTtLE .5. FUNDING NUMBERS

Aviation System Analysis Capability Executive Assistant Development C NAS2-14361

s. AUTHOR(S)

Eileen Roberts, James A. Villani, Kevin Anderson, and Paul Book

7. PERr-C_,M;;_._ ORGANIZATION NAME(S) AND ADDRESS(ES)

Logistics Management Institute

2000 Corporate Ridge

McLean, Virginia 22102-7805

g. SPONSORINGI MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

111. SUPPL_M-"-%'TARY NOTES

WU 538-16-11-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

NS801S1

10. SPONSORING / MONITORING
AGENCY flEPORT NUMBER

NASA/CR- 1999-209119

Langley Technical Monitor: Robert E. Yackovetsky
Final Report

121L _TtU,_UTION IAVAUBIUTY STATEMENT

Unclassified - Unlimited

Subject Category 01
Availability: NASA CASI (301) 621-0390
Distribution: Nonstandard

13. Ao._ItACT ('_mum 200 _:;_)

12b. DISTRIBUTION CODE

In this technical document, we describe the development of the Aviation System Analysis Capability (ASAC)
Executive Assistant (EA) Proof of Concept (POC) and Beta version. We describe the genesis and role of the
ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models
in the ASAC system, and describe the design process and the results of the ASAC EA POC and Beta system
development. We also describe the evaluation process and results for applicable COTS software. The
document has seven chapters, a bibliography, and two appendices.

14. SUBJECT TERMS

ASAC, NASA, Development, Executive Assistant

17. SECURITY CLASSIFICAlION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

160

16. PRICE CODE

A08

20. LIITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)
Pre_crdto_ by ANSJ Sial. Z39..18

29e. 1(_

